mersenneforum.org > Math Elliptic Carmichael numbers
 User Name Remember Me? Password
 Register FAQ Search Today's Posts Mark Forums Read

 2020-01-31, 12:39 #1 devarajkandadai     May 2004 30810 Posts Elliptic Carmichael numbers I had a conjecture that the above (defined below) exist. A set of 2 or more Carmichael numbers in which the smallest and largest prime factors are common but the intervening prime factors are different. Example: 15841 = 7*31*73 126217 =7*13*19*73
 2020-02-01, 06:04 #2 CRGreathouse     Aug 2006 2·29·101 Posts About 3 minutes of brute force gave me these: Code: 6601, [7, 41] 41041, [7, 41] 15841, [7, 73] 126217, [7, 73] 29341, [13, 61] 552721, [13, 61] 10585, [5, 73] 825265, [5, 73] 670033, [7, 199] 1773289, [7, 199] 4463641, [7, 271] 9585541, [7, 271] 852841, [11, 61] 10877581, [11, 61] 16778881, [7, 181] 31146661, [7, 181] 9582145, [5, 859] 31692805, [5, 859] 18162001, [11, 241] 40430401, [11, 241] 4463641, [7, 271] 9585541, [7, 271] 41341321, [7, 271] 9890881, [7, 241] 41471521, [7, 241] 1857241, [31, 331] 42490801, [31, 331] 512461, [31, 271] 45877861, [31, 271] 13992265, [5, 397] 47006785, [5, 397] 3224065, [5, 257] 67371265, [5, 257] 37167361, [7, 193] 69331969, [7, 193] 1569457, [17, 113] 75151441, [17, 113] 67994641, [11, 181] 76595761, [11, 181] 36121345, [5, 337] 93869665, [5, 337] 17812081, [7, 1171] 94536001, [7, 1171] 4767841, [13, 199] 102090781, [13, 199] 15888313, [7, 1783] 104852881, [7, 1783] 5031181, [19, 397] 109577161, [19, 397]

 Similar Threads Thread Thread Starter Forum Replies Last Post devarajkandadai Number Theory Discussion Group 14 2018-12-02 09:27 devarajkandadai Number Theory Discussion Group 1 2018-07-30 03:44 devarajkandadai Number Theory Discussion Group 0 2017-07-09 05:07 devarajkandadai Math 1 2004-09-16 06:06 devarajkandadai Math 0 2004-08-19 03:12

All times are UTC. The time now is 19:22.

Thu Apr 9 19:22:29 UTC 2020 up 15 days, 16:55, 2 users, load averages: 1.41, 1.40, 1.44