20100926, 21:59  #1 
Apr 2010
Over the rainbow
2^{2}·5·127 Posts 
fond of a factor? Urn yourself to become remains
M77224867 as a factor; 39977700267067630681
(this is my first find) Last fiddled with by firejuggler on 20100926 at 22:16 
20100926, 23:09  #2  
May 2010
3^{2}·7 Posts 
Any result beats nothing...
Quote:
I know how you feel. After my first two months of "No Factor Found" and "M4xxxxxxxx is not prime", I was thrilled to get my first "success" by finding a factor. Then nothing for another month, followed by 5 in one week. 

20100927, 01:31  #3 
Dec 2007
Cleves, Germany
2×5×53 Posts 
M90283087 has a factor: 2751173282304003942331209643538752923223

20100927, 12:11  #4 
Aug 2002
Buenos Aires, Argentina
1348_{10} Posts 
2751173282304003942331209643538752923223 = 38558349368410981273 x 71350909138188087151

20100928, 12:57  #5 
"Mark"
Feb 2003
Sydney
3·191 Posts 
My latest factors by P1 & TF:
M3060583 has a factor: 1691625283125322626439 M4494167 has a factor: 4090602041154466841 
20100928, 13:48  #6 
Aug 2002
Buenos Aires, Argentina
2504_{8} Posts 
My computer found the following results:
M120247 has a factor: 3250729890896242123679136285673 M200699 has a factor: 2560666376539295663544430207 M200723 has a factor: 88198734084915533896490498039 M244399 has a factor: 83084225896273645625002009 M253367 has a factor: 428118424378877527039271 M332273 has a factor: 32421566974480515508133113 M334177 has a factor: 699159963919259251767503 M334297 has a factor: 776286699004616614664844151 M334331 has a factor: 531598022680052134178237519 M334421 has a factor: 881767740830242233411702927457 M335953 has a factor: 300256724398460836714288247 M666269 has a factor: 599492540010920523991 M999631 has a factor: 182642107636183257011857 I think that at this time there are no more prime factors with less than 64 bits of unfactored Mersenne numbers with the exponent in the range 0  1M. Last fiddled with by alpertron on 20100928 at 13:48 
20100928, 22:50  #7 
Sep 2010
Annapolis, MD, USA
3^{3}·7 Posts 
Aww, you beat my largest factor...
M52884527 has a factor: 2627817767922406323172685733372671873 Mine is from P1. I have two P1 factors (this being the larger) and a handful of TF, of course none as large as these. I didn't realize P1 work was being done up in the M90XXXXXX range; all of my work has been assigned by Primenet thus far. I'm considering branching out into LMH/etc but for now, sticking with the assignments I get. 
20100929, 00:31  #8 
6809 > 6502
"""""""""""""""""""
Aug 2003
101×103 Posts
2^{3}·1,187 Posts 
The following exponents have the indicated 58 bit factors:
Code:
M( 3321933281 )C: 247169243036792441 M( 3321941023 )C: 257335941907083329 M( 3321941533 )C: 207520199336703217 M( 3321946711 )C: 173831252702387009 M( 3321947353 )C: 211195002096122687 M( 3321947791 )C: 192945856601239487 M( 3321952147 )C: 207085766384122673 M( 3321956731 )C: 284053769851732609 M( 3321958399 )C: 265055977878815729 M( 3321961451 )C: 265406974016828759 M( 3321964949 )C: 173958707488043393 M( 3321968057 )C: 234572555796081983 M( 3321968747 )C: 174438837843717961 M( 3321968813 )C: 162031473823121369 M( 3321970529 )C: 152471776764277769 M( 3321970957 )C: 158899298626885967 M( 3321971503 )C: 171795762921588007 M( 3321971773 )C: 220839634071945041 M( 3321973117 )C: 174763311823447463 M( 3321976067 )C: 151279820244576103 M( 3321979051 )C: 184733188755140279 M( 3321979807 )C: 191218393131095833 M( 3321980647 )C: 202327417168800727 M( 3321982369 )C: 176546613477245503 M( 3321987131 )C: 224007146605813033 M( 3321988843 )C: 228460833239381959 M( 3321989947 )C: 217502541334200791 M( 3321990323 )C: 169528687168781273 M( 3321991681 )C: 203087935003009591 M( 3321992761 )C: 228369329317261481 M( 3321992809 )C: 220645639540210559 M( 3321994223 )C: 246531602737680391 M( 3321997027 )C: 241807984207490543 M( 3321998689 )C: 170234620254279583 M( 3321999797 )C: 203984361226970543 M( 3321999929 )C: 217315342439391439 
20101006, 18:22  #9 
Sep 2010
Scandinavia
3·5·41 Posts 
M433494449 has a factor: 3656480526134520654607

20101008, 02:17  #10 
May 2010
3F_{16} Posts 
ECM Factor found
M5308217 has a factor: 19389284433827290601

20101011, 15:11  #11 
Sep 2010
Scandinavia
267_{16} Posts 
Funny example;
M2371703 has a factor: 172106762886153056494817 The funny part is that k= 2*2*2*2*1049*1811*34469*34631, so 2kp+1 could have been found with B2= 34631 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
A new factor of F11?!  siegert81  FermatSearch  2  20180124 04:35 
A fond farewell  rogue  Lounge  10  20081121 05:25 
who can factor 10^100+27?  aaa120  Factoring  17  20081113 19:23 
New factor  fivemack  ElevenSmooth  4  20080507 19:28 
Shortest time to complete a 2^67 trial factor (no factor)  dsouza123  Software  12  20030821 18:38 