mersenneforum.org  

Go Back   mersenneforum.org > Prime Search Projects > Wagstaff PRP Search

Reply
 
Thread Tools
Old 2013-09-19, 23:57   #23
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

32·7·53 Posts
Default

Quote:
Originally Posted by ATH View Post
I lost the other test on (2^13347311+1)/3 on the way, 10 days is a long time without any intermediate savefiles. Several other people seems to have these test running on faster computers than mine though, so I didn't restart it.
I've got 'em covered. One more day to go on a 4770k at 4GHz.

Last fiddled with by paulunderwood on 2013-09-20 at 00:08
paulunderwood is online now   Reply With Quote
Old 2013-09-20, 22:10   #24
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

32×7×53 Posts
Default

Code:
Running N+1 test using discriminant 2, base 1+sqrt(2)                                    
(2^13347311+1)/3 is Lucas PRP! (442900.4907s+0.0204s)
and confirming ATH's result:

Code:
Running N+1 test using discriminant 2, base 1+sqrt(2)                                    
(2^13372531+1)/3 is Lucas PRP! (443577.1559s+0.0284s)
The tests for (L+2)^(n+1)==5 (mod n, L^2+1) will take another 3 to 4 weeks

Last fiddled with by paulunderwood on 2013-09-20 at 22:14
paulunderwood is online now   Reply With Quote
Old 2013-10-17, 21:27   #25
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

32·7·53 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
The tests for (L+2)^(n+1)==5 (mod n, L^2+1) will take another 3 to 4 weeks
The tests passed for both PRPs.

I have emailed Henri Lifchitz requesting that the annotations for the PRPs in his database lists all our PRP tests.

Last fiddled with by paulunderwood on 2013-10-17 at 21:37
paulunderwood is online now   Reply With Quote
Old 2013-10-18, 00:58   #26
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

1011010011002 Posts
Default

Quote:
Originally Posted by paulunderwood View Post
The tests for (L+2)^(n+1)==5 (mod n, L^2+1) will take another 3 to 4 weeks
Sorry for my ignorance but n is the Wagstaff PRP right, but what is L ? and what is meant by "n, L^2 +1" in the modular expression? My guess is that (L+2)^(n+1)==5 for both (mod n) and (mod L^2+1) ?

(and yes I did spend a bit of time looking for an answer myself, before I get told to study myself :) But not too much since it is not that important)

Last fiddled with by ATH on 2013-10-18 at 01:02
ATH is offline   Reply With Quote
Old 2013-10-18, 01:33   #27
paulunderwood
 
paulunderwood's Avatar
 
Sep 2002
Database er0rr

64138 Posts
Default

The modular reduction is done over "n" and "L^2+1". Here is a worked example for n=11 where L^2==-1 (mod 11, L^2+1)

Code:
(L+2)^2==L^2+4*L+4==4*L+3 
(L+2)^3==(4*L+3)*(L+2)==4*L^2+11*L+6==0*L+6-4==2
(L+2)^6==2^2==4
(L+2)^12==4^2==16==5
This will work for all prime n==3 (mod 4), but is not proven that all composites will fail. Wagstaff are 3 (mod 4)

To cover all n, I take minimal x>=0 such that jacobiSymbol(x^2-4,n)==-1, and check:

Code:
(L+2)^(n+1)==5+2*x (mod n, L^2-x*L+1)
This is the basis of my JavaScript program, which has the running time of 2 Miller-Rabin rounds. It is explained in my pre-print "Quadratic Composite Tests" where I used \lambda instead of "L". The general "minimal x" method is good for n < 10^13 -- I am currently testing n < 7*10^13.

Last fiddled with by paulunderwood on 2013-10-18 at 01:47
paulunderwood is online now   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Searching for Wagstaff PRP T.Rex Wagstaff PRP Search 190 2020-07-13 21:44
Hot tuna! -- a p75 and a p79 by Sam Wagstaff! Batalov GMP-ECM 9 2012-08-24 10:26
Wagstaff Conjecture davieddy Miscellaneous Math 209 2011-01-23 23:50
Best settings to factor Wagstaff p = (2^n +1) / 1 diep GMP-ECM 10 2010-07-26 21:33
30th Wagstaff prime T.Rex Math 0 2007-09-04 07:10

All times are UTC. The time now is 15:18.

Thu Aug 13 15:18:58 UTC 2020 up 11:54, 1 user, load averages: 1.81, 1.62, 1.47

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.