![]() |
![]() |
#12 | |
"Mark"
Apr 2003
Between here and the
6,163 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#13 |
Jan 2005
479 Posts |
![]()
Ah thanks :)
I'd love to have the remaining .ini; I'm reading up on cygwin and how to compile the source now, if I can't handle it I reckon I'll be back for you to beg for binaries as well... I still had a very ancient version 2.5, no P+1, P-1 whatsoever... it sounds like it has evolved quite a bit :) |
![]() |
![]() |
![]() |
#14 |
Jan 2005
479 Posts |
![]()
Compiling is way easier then I ever thought it would be :)
|
![]() |
![]() |
![]() |
#15 | |
"Mark"
Apr 2003
Between here and the
6,163 Posts |
![]() Quote:
|
|
![]() |
![]() |
![]() |
#16 |
"Mark"
Apr 2003
Between here and the
6,163 Posts |
![]()
Here are some new factors. I'm stopping ECM and will use msieve on some of the smaller values.
Factor=(190468*5^181-1)/8350696811068256679952273 Method=ECM B1=11000000 Sigma=1285010070 Factor=(181754*5^182-1)/2038698488746960115415779 Method=P+1 B1=11000000 Sigma=0 Factor=(266206*5^129-1)/30696985392105649 Method=P+1 B1=1000000 Sigma=0 Factor=(175124*5^186-1)/513588340906647766621082933 Method=ECM B1=1000000 Sigma=387918309 Factor=(190334*5^174-1)/823918283555893175077567 Method=P+1 B1=3000000 Sigma=0 Factor=(326962*5^139-1)/4186471592323524772673 Method=P+1 B1=1000000 Sigma=0 |
![]() |
![]() |
![]() |
#17 |
"Mark"
Apr 2003
Between here and the
11000000100112 Posts |
![]()
Here are some msieve results:
284422*5^111-1 = 24038835244148619355105310827970092056793 * 4557432513506183772340688157886113663859093 49568*5^112-1 = 16787766406466816943097 * 5686551335775831395789060458827887112528891832450138913812567 244564*5^111-1 = 10235335327328061980017 * 224857569528631275881429 * 40931100608358616777499432662719730343 304004*5^112-1 = 883084520450978709728220967157 * 663006080680131978154637822997889030237473302457773207 Last fiddled with by rogue on 2006-10-17 at 00:44 |
![]() |
![]() |
![]() |
#18 |
"Mark"
Apr 2003
Between here and the
6,163 Posts |
![]()
A few more msieve results:
189766*5^113-1 = 128813458021380247369861 * 14186251477152607987765725365428134521770770726991162393990009 183916*5^117-1 = 42399397852905162380996534754127 * 26106600977032862532541765126445390338869673510178192437 211208*5^114-1 = 973721884734396620927419741 * 8659468398229276068706514519953664908695299344206982378639 181754*5^118-1 = 525613102235449055987356891572797687 * 10405867857680251957451696478807929370674014157800127 |
![]() |
![]() |
![]() |
#19 |
"Mark"
Apr 2003
Between here and the
6,163 Posts |
![]()
Two more msieve results. It would be better to switch back to ECMNet for the others for a while.
171362*5^120-1 = 13205387043574681401291550997 * 9762564312563427551375397101214318209341244980682709191661917 ./msieve 297016*5^121-1 = 1774080468990376518855677314795669 * 629762874830636929719348759785786852734923901938425592571 There are no more composites less than 90 digits. |
![]() |
![]() |
![]() |
#20 |
Jul 2003
wear a mask
22×3×127 Posts |
![]()
Just found and submitted these with some quick mprime P-1 runs....
Code:
7210637297104627 | 70082*5^128-1 54664922438141 | 146756*5^176-1 37076275916074565239 | 22966*5^199-1 395101795983287 | 164852*5^204-1 13915365963895553 | 227968*5^221-1 78065486929245307 | 127174*5^231-1 3664230465186135494231 | 95662*5^239-1 5599383752622756663491 | 53542*5^271-1 489654805514261194891 | 181754*5^278-1 6354534201861413 | 301562*5^330-1 190223578435224840641 | 53546*5^392-1 507438630988444678349 | 151026*5^410-1 86063612368176106063 | 146756*5^412-1 131088948239432129497 | 98038*5^441-1 6614589777190617023 | 131848*5^447-1 574445557854580903 | 150344*5^516-1 3374450414375580161 | 211208*5^540-1 6676783195589983833332361409 | 263432*5^566-1 5908875585165836527 | 304004*5^596-1 2236864379520079 | 34354*5^639-1 512375570213359 | 173198*5^644-1 170119868528826049 | 64598*5^654-1 11815154236447 | 4906*5^661-1 3234648857970913 | 292648*5^673-1 79597251147600827 | 35816*5^674-1 28003933052519310841 | 3622*5^711-1 415435099650058329623 | 101284*5^528+1 52467536732556811 | 10918*5^1332+1 829218408585403 | 109208*5^481+1 1740782526434467 | 110242*5^380+1 83008569135731 | 110488*5^1468+1 5386693058844337 | 110488*5^940+1 244115802429647 | 111382*5^1504+1 4210979187208951 | 111382*5^454+1 478943558034593 | 118568*5^469+1 765577640155986497381 | 118568*5^741+1 105139662064361 | 123748*5^1120+1 2895344320339 | 123748*5^1292+1 15008610360923 | 127312*5^1140+1 20288985899446773857 | 127312*5^1404+1 1588352442499 | 138514*5^1230+1 1433187238796590953925091 | 152588*5^771+1 6505622632049 | 154222*5^1182+1 921913997699843 | 154222*5^1348+1 1149941877019357 | 177742*5^649-1 1174156561050195731 | 200062*5^257-1 121664461662516457957154127262589496751 | 200062*5^293-1 2543201155069541 | 207394*5^205-1 85234125089152788851 | 243944*5^508-1 Last fiddled with by masser on 2006-10-31 at 01:30 Reason: space saving |
![]() |
![]() |
![]() |
#21 |
Tribal Bullet
Oct 2004
1101110011102 Posts |
![]()
I didn't see the complete factorization of this number in previous posts, so...
$ msieve -v "(70082*5^128-1)/7210637297104627" factoring 2856231415474432974944212479854659271054467580145259335332537697794 127608187 (79 digits) prp20 factor: 95005088536679698589 prp59 factor: 30063983513595644103640396803691356370355990204630108417783 Incidentally, Intel dual-core machines *suck* at running msieve. A 1GHz athlon is almost as fast as a 3GHz Pentium D, and I've received reports that more recent Intel dual-core machines aren't much better. It may just be bad tuning, but it may also be high cache latency. jasonp |
![]() |
![]() |
![]() |
#22 |
Oct 2006
7·37 Posts |
![]()
all the P4 family (p4, pentium D) suck at sieving.
the core 2 duo family is much better in fact everything is good at sieving except the P4 and pentium D |
![]() |
![]() |