![]() |
![]() |
#12 |
1216 Posts |
![]()
Why are those primes general Mersennes? What is your definition of it?
|
![]() |
#13 | ||
2·3·7·17 Posts |
![]()
Official definition:
Quote:
Quote:
The procedure for the algorithm is to, "reduce to lowest terms". Since ie, 1*2^7-1 is also equal to, 2*2^6-1, 4*2^5-1, 8*2^4-1, 16*2^3-1, 32*2^2-1, 64*2^1-1, and 128*2^0-1. The lowest term, of the multiplier(k), reveals a prime exponent(n) with Mersenne primes. |
||
![]() |
#14 |
5·1,597 Posts |
![]()
61051 216113 is prime!
Update of the contiguous sequence: 1 216091-1 62431 216093-1 97065 216095-1 16371 216098-1 55847 216100-1 48609 216101-1 22311 216103-1 6213 216107-1 20265 216109-1 74697 216110-1 122649 216111-1 61051 216113-1 |
![]() |
#15 |
173C16 Posts |
![]()
There seems to be a large gap between primes here.
I have passed k=500,000 with n=216113. It should hit one soon, and keep the average at about one prime per week. |
![]() |
#16 |
10100100111102 Posts |
![]()
I just noticed the strangest thing, ... when I opened up this forum, It loaded as if it were back 2004. I saw old messages about networked LLR, and moderators needed.
![]() Anyways, a new prime! 287453 216114 Update: 1 216091-1 62431 216093-1 97065 216095-1 16371 216098-1 55847 216100-1 48609 216101-1 22311 216103-1 6213 216107-1 20265 216109-1 74697 216110-1 122649 216111-1 61051 216113-1 287453 216114-1 |
![]() |
#17 |
32·5·101 Posts |
![]()
Update:
1 216091-1 62431 216093-1 97065 216095-1 16371 216098-1 55847 216100-1 5/11/05 48609 216101-1 22311 216103-1 6213 216107-1 20265 216109-1 74697 216110-1 122649 216111-1 61051 216113-1 287453 216114-1 185551 216115-1 7/18/05 New! |