![]() |
![]() |
#1 |
Nov 2003
2·1,811 Posts |
![]()
Well, there is no thread to post small primes of reserved k's
so I decided to create a new thread. For my k=3611911875 up to n=100800 I found additional small primes for following n's: 75088 90363 91405 93732 <-- 100th prime 97888 There are now 101 primes to 100k and 6 primes in the 134-200k range. I'll continue the work in the 100-134k range and I just began tests in the 200-220 range. I sieved candidates in the 200-400 range to 800 bn using ksieve. |
![]() |
![]() |
![]() |
#2 |
Jul 2003
Thuringia; Germany
2×29 Posts |
![]()
Ok, I searched up my k=158823815 up to n=85000 (and a little beyond this moment). While doing this I found 110 primes:
1, 3, 4, 7, 11, 12, 16, 19, 21, 28, 31, 40, 47, 53, 62, 69, 75, 76, 82, 98, 103, 104, 115, 118, 134, 151, 152, 154, 163, 177, 257, 261, 271, 274, 309, 328, 331, 349, 410, 452, 526, 573, 597, 616, 700, 714, 738, 862, 922, 923, 1009, 1025, 1306, 1564, 1848, 1936, 2032, 2061, 2074, 2212, 2255, 2467, 2522, 2627, 2678, 2753, 2788, 3011, 3979, 4185, 4983, 5189, 5494, 5850, 6838, 7076, 7469, 7816, 8048, 8226, 8396, 8624, 8738, 12933, 13540, 15779, 17388, 18792, 20849, 21382, 21446, 22330, 23681, 24527, 27299, 28409, 32634, 33558, 35264, 38374, 45234, 52257, 55111, 56096, 64593, 70900, 73506, 75326, 75617, 85535 With the other prime for n=336542 this makes 111 primes found for this k. Cyrix Last fiddled with by Kosmaj on 2007-07-27 at 23:46 Reason: n's moved in-line |
![]() |
![]() |
![]() |
#3 |
Jul 2003
Thuringia; Germany
1110102 Posts |
![]()
Oh, a typing error: Actual k=1581823815.
Cyrix |
![]() |
![]() |
![]() |
#4 |
Nov 2003
2·1,811 Posts |
![]()
Then this is now our "best k" since the 100th prime occured for n=38374. The previous best was k=2995125705, and i(100)=60190.
|
![]() |
![]() |
![]() |
#5 |
Aug 2003
Europe
110000102 Posts |
![]()
I tested the 15k = 968911515 from n=2 to n=50000 and found the following primes. I will not continue testing this 15k.
Code:
968911515 3 968911515 6 968911515 13 968911515 15 968911515 16 968911515 18 968911515 21 968911515 23 968911515 28 968911515 31 968911515 32 968911515 39 968911515 40 968911515 43 968911515 54 968911515 63 968911515 70 968911515 71 968911515 74 968911515 84 968911515 88 968911515 92 968911515 100 968911515 110 968911515 128 968911515 136 968911515 139 968911515 151 968911515 203 968911515 218 968911515 223 968911515 238 968911515 248 968911515 253 968911515 321 968911515 349 968911515 356 968911515 362 968911515 374 968911515 507 968911515 533 968911515 572 968911515 952 968911515 970 968911515 993 968911515 1037 968911515 1262 968911515 1373 968911515 1378 968911515 1408 968911515 1601 968911515 1602 968911515 1615 968911515 1985 968911515 2338 968911515 2955 968911515 3111 968911515 3170 968911515 3828 968911515 4171 968911515 4857 968911515 5646 968911515 7035 968911515 8861 968911515 9331 968911515 11432 968911515 13846 968911515 15273 968911515 15638 968911515 27221 968911515 28197 968911515 34579 968911515 40628 968911515 42459 968911515 45364 968911515 46492 968911515 46632 |
![]() |
![]() |
![]() |
#6 |
Aug 2003
Europe
2·97 Posts |
![]()
I also tested the 15k = 475977645 from n=2 to n=50000 and found the following primes. I will not continue testing this 15k.
Code:
475977645 3 475977645 6 475977645 7 475977645 21 475977645 23 475977645 28 475977645 34 475977645 37 475977645 46 475977645 54 475977645 59 475977645 67 475977645 75 475977645 81 475977645 96 475977645 99 475977645 101 475977645 107 475977645 112 475977645 114 475977645 123 475977645 138 475977645 153 475977645 171 475977645 215 475977645 233 475977645 389 475977645 421 475977645 463 475977645 595 475977645 652 475977645 793 475977645 821 475977645 952 475977645 970 475977645 1167 475977645 1669 475977645 1899 475977645 1967 475977645 2025 475977645 2217 475977645 2254 475977645 2260 475977645 3059 475977645 3118 475977645 3787 475977645 4828 475977645 5352 475977645 6049 475977645 6544 475977645 6675 475977645 6676 475977645 6685 475977645 6915 475977645 7266 475977645 7868 475977645 8659 475977645 9040 475977645 9382 475977645 9584 475977645 9990 475977645 10146 475977645 10192 475977645 10757 475977645 11492 475977645 11788 475977645 12181 475977645 12430 475977645 12838 475977645 13878 475977645 14478 475977645 14691 475977645 14754 475977645 15460 475977645 16729 475977645 17037 475977645 18310 475977645 22465 475977645 23662 475977645 37615 475977645 41087 475977645 41827 475977645 43860 475977645 44640 Last fiddled with by BotXXX on 2004-03-19 at 12:00 Reason: typos |
![]() |
![]() |
![]() |
#7 |
Nov 2004
California
170410 Posts |
![]()
Here are the first 79 primes for 515106735. I'll continue searching to
see where the 100th prime occurs. 515106735 4 515106735 5 515106735 27 515106735 38 515106735 40 515106735 62 515106735 63 515106735 66 515106735 67 515106735 70 515106735 89 515106735 99 515106735 114 515106735 139 515106735 152 515106735 158 515106735 185 515106735 189 515106735 222 515106735 269 515106735 272 515106735 297 515106735 341 515106735 387 515106735 394 515106735 483 515106735 534 515106735 559 515106735 640 515106735 659 515106735 683 515106735 686 515106735 724 515106735 760 515106735 794 515106735 830 515106735 854 515106735 1121 515106735 1183 515106735 1314 515106735 1383 515106735 1427 515106735 1474 515106735 1521 515106735 1806 515106735 1896 515106735 2001 515106735 2092 515106735 2111 515106735 2282 515106735 2634 515106735 2737 515106735 3221 515106735 3343 515106735 4079 515106735 4137 515106735 4963 515106735 5086 515106735 5279 515106735 5567 515106735 6171 515106735 6623 515106735 10702 515106735 13178 515106735 14129 515106735 16075 515106735 16110 515106735 17041 515106735 18006 515106735 19518 515106735 21961 515106735 23612 515106735 26781 515106735 27811 515106735 29367 515106735 47173 515106735 58301 515106735 58722 515106735 61684 |
![]() |
![]() |
![]() |
#8 | |
Nov 2004
California
23×3×71 Posts |
![]()
Here are the first hundred primes for 860541825.
The 100th occurs at n=54696 Quote:
|
|
![]() |
![]() |
![]() |
#9 |
Nov 2004
California
6A816 Posts |
![]()
[FONT=Arial]After looking at Primoproths and Payam numbers, I'm now running a script
to see how many primes are generated for k's constructed by multiplying all combinations of the first 11 primes. The top 20 so far are listed below and ALL fall into the 15*k category. Some have primes listed on the top-5000 site but some do not. Was something like this run to generate the original 15k candidate list? Format: #primes for n=1-10000, k 60 29058315 60 842691135 61 19635 61 25935 61 102765 61 15935205 61 3457939485 61 47912205 61 8580495 62 10015005 62 10555545 62 16545165 62 2330445 62 373065 63 111546435 64 14637315 64 25634895 65 190285095 66 26565 68 49335 thanks, Larry |
![]() |
![]() |
![]() |
#10 |
Jul 2003
Behind BB
78116 Posts |
![]()
I believe the original 15k candidate list was produced by calculating the weights of all k divisible by 15 up to a certain limit and removing all of those k's with a weight lower than some cutoff.
There is a program available online called psieve that will compute the weights of a sequence of k values. You should check it out... regards, masser |
![]() |
![]() |
![]() |
#11 |
Nov 2004
California
23·3·71 Posts |
![]()
Here are the first 100 primes for 8331405
8331405 9 8331405 11 8331405 17 8331405 21 8331405 31 8331405 32 8331405 33 8331405 45 8331405 57 8331405 61 8331405 64 8331405 67 8331405 69 8331405 77 8331405 80 8331405 85 8331405 88 8331405 107 8331405 115 8331405 117 8331405 120 8331405 121 8331405 124 8331405 147 8331405 155 8331405 161 8331405 164 8331405 168 8331405 177 8331405 179 8331405 221 8331405 232 8331405 258 8331405 261 8331405 264 8331405 281 8331405 282 8331405 299 8331405 308 8331405 342 8331405 415 8331405 471 8331405 503 8331405 504 8331405 505 8331405 537 8331405 572 8331405 680 8331405 989 8331405 1328 8331405 1565 8331405 1607 8331405 1613 8331405 1841 8331405 1953 8331405 2509 8331405 2692 8331405 2739 8331405 2834 8331405 3627 8331405 3735 8331405 3870 8331405 3960 8331405 4083 8331405 4682 8331405 4788 8331405 5187 8331405 5247 8331405 5623 8331405 5804 8331405 6015 8331405 6020 8331405 6405 8331405 6569 8331405 7052 8331405 7315 8331405 7477 8331405 7489 8331405 8389 8331405 8800 8331405 10407 8331405 10512 8331405 12035 8331405 13015 8331405 14634 8331405 14941 8331405 16339 8331405 16367 8331405 16554 8331405 26533 8331405 28153 8331405 29081 8331405 30222 8331405 32391 8331405 36371 8331405 37323 8331405 39251 8331405 43935 8331405 45052 8331405 45773 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
16e Post Processing Progress | pinhodecarlos | NFS@Home | 8 | 2018-11-28 13:45 |
Sieving with powers of small primes in the Small Prime variation of the Quadratic Sieve | mickfrancis | Factoring | 2 | 2016-05-06 08:13 |
Small primes | kar_bon | Riesel Prime Data Collecting (k*2^n-1) | 3 | 2013-05-11 04:56 |
Sierpinski/Riesel Base 5: Post Primes Here | robert44444uk | Sierpinski/Riesel Base 5 | 358 | 2008-12-08 16:28 |
POST PRIMES you've found here, and name or prover code | TTn | 15k Search | 415 | 2006-03-02 21:17 |