![]() |
![]() |
#496 |
Jun 2012
1528 Posts |
![]()
Ah, whoops - darn... I looked in the champions list on your website and saw the M[x] value, thinking that was all there was... ah well, I'll find another one. I'm trying not to extend too far due to the fact that I only have limited resources... maybe I'll find my own or something. Is there a list of pre-checked ranges anywhere so I don't overlap work on any E levels?
|
![]() |
![]() |
![]() |
#497 | |
Jun 2003
Suva, Fiji
204010 Posts |
![]() Quote:
Grateful for your computer time. Safe area (no overlap) would be Riesel E52 for iteration 100 onwards. You will find plenty of VPS and a real chance to beat some records. I think the eventual k to check beyond n=10000 would be small enough for LLR as well. This would use the payam2.exe code - see the thread for details on use. Payam2.exe is amazing code and expects two files to start: in.txt and progress.txt. It outputs two files- one with the VPS and one with the record table. The in.txt file might look like: Code:
maxn 10000 hashsize 65536 sievelimit 134217728 timesave 60 boundforquickcheck 4096 vpscount 100 nashsievelimit 500 c0 1.5 c1 5.0 nash_check 1 number_of_sievebits 7 11 64 13 128 15 256 18 512 21 1024 24 2048 27 4096 smith_check 1 number_of_levels 18 9 50 17 100 25 200 32 300 38 400 43 500 51 750 57 1000 64 1500 69 2000 73 2500 77 3000 82 4000 87 5000 91 6000 94 7000 97 8000 99 9000 Code:
c -1 E 52 iteration 100 I 0 maxiter 401776 maxI 0 Code:
1 1 73211 R 52 2 2 85307 R 52 3 3 85307 R 52 4 4 11746227 R 52 5 5 35664793 R 52 6 6 35664793 R 52 7 7 3863302393 R 52 8 8 63502511737 R 52 9 9 333372044267 R 52 10 10 1688812151199 R 52 11 11 8581408158265 R 52 12 12 85029720714771 R 52 13 13 85029720714771 R 52 14 16 66622302705377 R 52 15 20 12704913755509 R 52 16 21 42030214559317 R 52 17 24 42030214559317 R 52 18 28 1528744854411 R 52 19 31 15145054826747 R 52 20 32 15145054826747 R 52 21 38 104169095715013 R 52 22 41 104169095715013 R 52 23 47 12896946016177 R 52 24 48 115534069991891 R 52 25 56 61290475771413 R 52 26 60 82960601561481 R 52 27 65 19036059142637 R 52 28 68 19036059142637 R 52 29 75 15969072785755 R 52 30 80 19981335621859 R 52 31 87 61233200129625 R 52 32 89 61233200129625 R 52 33 91 61233200129625 R 52 34 105 61233200129625 R 52 35 109 61233200129625 R 52 36 118 61233200129625 R 52 37 124 25551958584589 R 52 38 129 61233200129625 R 52 39 140 61233200129625 R 52 40 152 15969072785755 R 52 41 162 15969072785755 R 52 42 173 15969072785755 R 52 43 187 6684715747071 R 52 44 193 15969072785755 R 52 45 213 32267720829105 R 52 46 223 118003743277061 R 52 47 230 118003743277061 R 52 48 241 118003743277061 R 52 49 265 118003743277061 R 52 50 284 73807093031125 R 52 51 287 73807093031125 R 52 52 295 73807093031125 R 52 53 338 83141430628207 R 52 54 349 85132812172945 R 52 55 365 85132812172945 R 52 56 388 83141430628207 R 52 57 389 83141430628207 R 52 58 439 195937921823 R 52 59 466 195937921823 R 52 60 517 20392926558493 R 52 61 546 4967391175523 R 52 62 589 4967391175523 R 52 63 607 20392926558493 R 52 64 660 19122572047641 R 52 65 720 13104423571343 R 52 66 745 195937921823 R 52 67 764 195937921823 R 52 68 799 195937921823 R 52 69 856 39672235877965 R 52 70 871 39672235877965 R 52 71 923 147707435198851 R 52 72 933 19122572047641 R 52 73 948 147707435198851 R 52 74 972 147707435198851 R 52 75 1010 147707435198851 R 52 76 1126 147707435198851 R 52 77 1164 30921565622401 R 52 78 1323 60553961574993 R 52 79 1396 30921565622401 R 52 80 1499 60553961574993 R 52 81 1555 30921565622401 R 52 82 1626 30921565622401 R 52 83 1702 39672235877965 R 52 84 1752 30921565622401 R 52 85 1951 34366743655013 R 52 86 1964 34366743655013 R 52 87 2060 34366743655013 R 52 88 2074 34366743655013 R 52 89 2193 34366743655013 R 52 90 2379 34366743655013 R 52 91 2424 34366743655013 R 52 92 2517 34366743655013 R 52 93 2674 34366743655013 R 52 94 2724 34366743655013 R 52 95 2906 39672235877965 R 52 96 3078 39672235877965 R 52 97 3324 34366743655013 R 52 98 3447 39672235877965 R 52 99 3503 39672235877965 R 52 100 3556 34366743655013 R 52 101 3943 34366743655013 R 52 102 4463 39672235877965 R 52 103 4481 39672235877965 R 52 104 4559 39672235877965 R 52 105 4976 39672235877965 R 52 106 4985 39672235877965 R 52 107 5232 39672235877965 R 52 108 5409 39672235877965 R 52 109 5840 39672235877965 R 52 110 5953 39672235877965 R 52 111 5996 39672235877965 R 52 112 6159 39672235877965 R 52 113 6213 39672235877965 R 52 114 6218 39672235877965 R 52 115 6872 39672235877965 R 52 116 7388 39672235877965 R 52 117 7523 39672235877965 R 52 118 7600 39672235877965 R 52 119 7799 39672235877965 R 52 120 9283 39672235877965 R 52 121 9793 39672235877965 R 52 122 13875 39672235877965 R 52 123 16026 39672235877965 R 52 124 16560 39672235877965 R 52 125 18536 39672235877965 R 52 126 19533 39672235877965 R 52 127 20721 39672235877965 R 52 128 22126 39672235877965 R 52 129 23394 39672235877965 R 52 130 24653 39672235877965 R 52 131 25560 34366743655013 R 52 132 28892 34366743655013 R 52 133 28919 34366743655013 R 52 134 29566 34366743655013 R 52 135 29924 34366743655013 R 52 136 31201 34366743655013 R 52 137 32790 34366743655013 R 52 138 40567 39672235877965 R 52 139 42384 39672235877965 R 52 140 56415 39672235877965 R 52 |
|
![]() |
![]() |
![]() |
#498 |
Jun 2012
2·53 Posts |
![]()
I don't have GMP compiled or anything like that, so - unless I did that - I'd only be able to use v1 code. Do you have a compiled Windows x64 w/ AVX binary I could use (preferably), or whatever is available?
Thanks, James |
![]() |
![]() |
![]() |
#499 |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]()
The Windows 64 file is in the attached zip. You should run from the dos console. (these days called "command prompt" in "accessories"
|
![]() |
![]() |
![]() |
#500 |
Jun 2012
2×53 Posts |
![]()
Thanks. For the in.txt file, do I need to set those bounds to the payams that have the required number of primes at those candidate levels?
|
![]() |
![]() |
![]() |
#501 | |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]() Quote:
The output will be a record file with the best performance at any level of p, and results file with VPS, i.e. 100 primes before n=10000 |
|
![]() |
![]() |
![]() |
#502 |
Jun 2012
2×53 Posts |
![]()
Thanks for the information.
Should I use specific bounds for the iteration and Imax values? |
![]() |
![]() |
![]() |
#503 |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]() |
![]() |
![]() |
![]() |
#504 |
Jun 2003
Suva, Fiji
23·3·5·17 Posts |
![]()
A new best Riesel performer at higher p:
Candidate: 22544089918041953 R 130 147 46170 148 46787 149 47920 150 49784 151 53246 152 55579 153 59638 154 60260 155 64574 I'll probably run this up to 150K |
![]() |
![]() |
![]() |
#505 |
Jun 2003
Suva, Fiji
23×3×5×17 Posts |
![]()
The new performer continues to do well - at n= 86590 now
156 67190 157 67470 158 71221 159 73142 160 77776 161 80678 162 84684 This becomes the second VPS to break the 159/100000 barrier and is currently 6 primes ahead of the next best Riesel. Another candidate broke the previous records for 146 and 147 primes (the latter only set yesterday) but faded overnight Candidate 24967589597968379 R 106 Riesel records: 146 40418 147 41490 Last fiddled with by robert44444uk on 2013-06-23 at 03:27 |
![]() |
![]() |
![]() |
#506 |
Jun 2003
Suva, Fiji
111111110002 Posts |
![]()
All the higher Riesel records have been smashed with the new candidate, now at 170 primes by n=117955. To note, 169 and 170 are really close, but not a Sophie Germain pair.
163 87557 164 96045 165 102231 166 102651 167 104202 168 104655 169 111235 170 111239 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem | sweety439 | sweety439 | 11 | 2020-09-23 01:42 |
Dual Sierpinski/Riesel prime | sweety439 | sweety439 | 0 | 2016-12-07 15:01 |
Sierpinski/ Riesel bases 6 to 18 | robert44444uk | Conjectures 'R Us | 139 | 2007-12-17 05:17 |
Sierpinski/Riesel Base 10 | rogue | Conjectures 'R Us | 11 | 2007-12-17 05:08 |
Sierpinski / Riesel - Base 22 | michaf | Conjectures 'R Us | 49 | 2007-12-17 05:03 |