![]() |
![]() |
#1 |
P90 years forever!
Aug 2002
Yeehaw, FL
23×1,019 Posts |
![]()
Some double-check exponents could use more P-1.
Requirements: 1) A machine with at least 32GB of RAM. 2) Version 30.8 of prime95 3) Configure prime95 to use 24GB or more. Reserve some exponents from the list below (post your reservation so the exponents can be removed from the list). My quad core machine is doing one P-1 every ~70 minutes. Last fiddled with by Prime95 on 2022-09-04 at 08:32 Reason: Claims removed |
![]() |
![]() |
![]() |
#2 |
P90 years forever!
Aug 2002
Yeehaw, FL
1FD816 Posts |
![]()
Choose from:
Code:
Pfactor=60C91062A9B68629577154EFB5797907,1,2,104887421,-1,77,1 Pfactor=D80C65484A97180704E24962B2A009FF,1,2,104887493,-1,77,1 Pfactor=6727B2066DA6F550AF0C500B20EED9CB,1,2,104887571,-1,77,1 Pfactor=0D2186B36BF42B091F631C03C1029BC5,1,2,104888029,-1,77,1 Pfactor=7CA0B57DB8E02203FBF5DBE1345CAF4E,1,2,104888101,-1,78,1 Pfactor=B1B8B1B879794ABE708F81C9452CED36,1,2,104888177,-1,78,1 Pfactor=85EE49B64998B0F2BEAD2310998F921D,1,2,104888507,-1,78,1 Pfactor=A1B65E943FAC701166192564F663491F,1,2,104889061,-1,78,1 Pfactor=89EFCAB7A3F6134BDF71A6D06E676364,1,2,104889157,-1,78,1 Pfactor=349E21325D249D8F10EF3896F3E74CF4,1,2,104889373,-1,78,1 Pfactor=07E89EC97B863AB02C62CBBF59F03A03,1,2,104889503,-1,78,1 Pfactor=E559177EA9A6B3D840B799FD8BE4D1DF,1,2,104889559,-1,78,1 Pfactor=EB004F60BCE6207AEAF6672FC96961AA,1,2,104889619,-1,78,1 Pfactor=ACDA78FD291423B0268272A111CDD79A,1,2,104890099,-1,78,1 Pfactor=5DF14872C79F40167E07FA2D5A2D3E88,1,2,104890427,-1,78,1 Pfactor=D0A65BA34A521D987E8BAD0B9833658D,1,2,104890451,-1,78,1 Pfactor=4D594C23F181FFB97FA2750BB0E7B405,1,2,104891327,-1,77,1 Pfactor=B67A90931550A4F40E9E5D08CDAC77F6,1,2,104891359,-1,77,1 Pfactor=DD8B63BFB5E931B3ADCEF8667EEC6A9B,1,2,104891387,-1,77,1 Pfactor=15732EE9E3E8E99E765A013525872A93,1,2,104891441,-1,77,1 Pfactor=7C10ED8DC58CC1B3FABF6010411479BA,1,2,104891497,-1,77,1 Pfactor=48CD531964C77C5405E06AB5FABAB37A,1,2,104891561,-1,78,1 Pfactor=40378536A734631036A82852A308107F,1,2,104891719,-1,77,1 Pfactor=5478C3816B61CF01597E915BE88458AB,1,2,104891807,-1,77,1 Pfactor=1EBF2BC93DAE8C60C5CC9708533B0440,1,2,104892097,-1,77,1 Pfactor=A0EAC22A284467482FE30E2BDE830D46,1,2,104892197,-1,77,1 Pfactor=23D657AB0B2B43F310607C711E899F10,1,2,104892223,-1,77,1 Pfactor=779DED02309A289B1C9033F7E6BC814B,1,2,104892289,-1,78,1 Pfactor=FE4D325F83DA43C759078ABBF6010236,1,2,104892311,-1,77,1 Pfactor=8DC697BB9B1A992ECC992D31C7D121A9,1,2,104892451,-1,77,1 Pfactor=C85BCF396D35F9B16BF95E4D6F69AF64,1,2,104892493,-1,77,1 Pfactor=C112F3947C59ECBD891ECA87FA142EB7,1,2,104892607,-1,77,1 Pfactor=E32C029CB6E506448B7C0157CE0194E6,1,2,104892647,-1,77,1 Pfactor=5A94AF7891E754D95147575DA26AD178,1,2,104892679,-1,77,1 Pfactor=D892BDA762EF934CAA3823C43DCCEA7D,1,2,104892727,-1,77,1 Pfactor=EEF3543904A52FF0E59C636326C40753,1,2,104892757,-1,77,1 Pfactor=7B890736F1343FF06B79BE48AAA358F9,1,2,104892761,-1,77,1 Pfactor=08786F098E884B0E9A65FA48B698DDD3,1,2,104892829,-1,77,1 Pfactor=791CB9D63F9CF00CD7CFA7A3C83C91A7,1,2,104892859,-1,77,1 Pfactor=30888490A864C9E86FEEE61F82306E12,1,2,104893001,-1,77,1 Pfactor=A9F23B9028E6D1A2E086698952D97786,1,2,104893021,-1,77,1 Pfactor=385E374DF58F91735477EF6F5973E295,1,2,104893067,-1,77,1 Pfactor=2AC736D1827C96E6AC59344176033ADE,1,2,104893171,-1,78,1 Pfactor=AB9F8D18DFACE6A28131BB90B4A0D74A,1,2,104893183,-1,77,1 Pfactor=9C3CC76481DC313B38FC5812C55B7E10,1,2,104893219,-1,77,1 Pfactor=0051B162E14BF193A2F95B3AA7AD6BC5,1,2,104893259,-1,77,1 Pfactor=C8EB5C5DE11813A7AC5D75831166308C,1,2,104893309,-1,77,1 Pfactor=9A9292BA78D3B4640A3660A1C02BFAD9,1,2,104893339,-1,77,1 Pfactor=675A40636C68F812861D8FA2B5BB5132,1,2,104893361,-1,77,1 Pfactor=01036EF8139048ECAFF46476E87C3554,1,2,104893387,-1,77,1 Pfactor=D9591638662A529EDCD83F140CFCC0D8,1,2,104893489,-1,77,1 Pfactor=69852214F136E71C8145168D3C18B741,1,2,104893511,-1,77,1 Pfactor=017FD2414D4B2D14555F720A7AA54F71,1,2,104893517,-1,77,1 Pfactor=45E43254ADAB31B68D19A9686CAA32E1,1,2,104893693,-1,77,1 Pfactor=5C543096D4B10168D2262AB9F514635A,1,2,104893759,-1,77,1 Pfactor=54ADA47EC7415A48E453D1971E77532A,1,2,104893787,-1,77,1 Pfactor=CFC39F3CDC4F01A1DFF023C1F297FE94,1,2,104893829,-1,77,1 Pfactor=BCBED96757F37BDE46EB5E289FACABF1,1,2,104893891,-1,77,1 Pfactor=D18BEE3D415387A02E85879F6B5FEB11,1,2,104893931,-1,77,1 Pfactor=ECB82F1E1A6C684C57A27C00DC2629AF,1,2,104893933,-1,78,1 Pfactor=97B8B6227F9FD3FD99EBDB6336CCC418,1,2,104893969,-1,78,1 Pfactor=E7B2082978FC83EDC38C5A3EBD1D3301,1,2,104894341,-1,77,1 Pfactor=ADEEB595A19341AD7B7F7423B2AADE50,1,2,104894351,-1,77,1 Pfactor=286DDA94E4DF185B1323DC3994CCAA1E,1,2,104894353,-1,77,1 Pfactor=DA971F33A7B6D5F29EB678DE2017708D,1,2,104896999,-1,78,1 Pfactor=79DBC6F9CF7D1D69115F7A730629075C,1,2,104897179,-1,78,1 Pfactor=05D98AEE413339F815ED8BE52AE64FD5,1,2,104897729,-1,78,1 Pfactor=7581A28AF8D612FE8AE4B2918E61444A,1,2,104898763,-1,78,1 Pfactor=A9F6641A2925B20F3B892397F1A8D8ED,1,2,104898767,-1,78,1 Pfactor=B4B47161B2611FE26699F6215DC13DC2,1,2,104898809,-1,78,1 Pfactor=10F1D6585FA5FCC137DDF2E64D054939,1,2,104898923,-1,78,1 Pfactor=678B6E7915842751BAD62EC330A78866,1,2,104898979,-1,78,1 Pfactor=F6D66D8C0005EE1163ABC61C85B469F7,1,2,104899261,-1,78,1 Pfactor=197E8850A3A2EAA5A2EEA0F5AC0E1656,1,2,104899511,-1,78,1 Pfactor=72C1E61D9B98B13E7CA70C99F143F774,1,2,104899577,-1,78,1 Pfactor=6BC6115AB9D96DE91031DF18F3860B8A,1,2,104899787,-1,78,1 Pfactor=C9235D0C80CCA836B762C2DC61722437,1,2,104900093,-1,78,1 Pfactor=91538908F66131C34CCD337A95522516,1,2,104900261,-1,78,1 Pfactor=3EC1C162176C74C353B3C1775982FEED,1,2,104900639,-1,78,1 Pfactor=F29320650C6E6F073B1465F8198DA513,1,2,104900701,-1,78,1 Pfactor=D38860CB365B02C726C07FB56103CD30,1,2,104900707,-1,78,1 Pfactor=EFC24F05433B2B5B6E39FD7E39392C68,1,2,104900921,-1,78,1 Pfactor=AB601DB24BF2D31541106D93F32A6A43,1,2,104900987,-1,78,1 Pfactor=274FE659B534A464C086551E71E6349A,1,2,104901617,-1,78,1 Pfactor=B1F913FF2BEBCADE4039A6DADBAD4436,1,2,104901631,-1,78,1 Pfactor=988A35B6886CB404B8228F1DF3A59F41,1,2,104902079,-1,78,1 Pfactor=8C9B098DD5948CEC06A012C99BD19114,1,2,104902397,-1,78,1 Pfactor=42EC6D41283B67C059D21A28B39E46DD,1,2,104902459,-1,78,1 Pfactor=1F6435354AAC889F864496C8BA5C161B,1,2,104902607,-1,78,1 Pfactor=4340D24A75E5A72BDB4FF51A598C480C,1,2,104902879,-1,78,1 Pfactor=0D7C7DB9DD6137461CB14A410029DC8F,1,2,104904269,-1,78,1 Pfactor=110F3797BDF9D5930D27194AF3F1413B,1,2,104904307,-1,78,1 Pfactor=F0C89D4F4008AA8CCA9CEAAAA4D6E1AC,1,2,104905211,-1,78,1 Pfactor=D8AFE707D10DD08157018E5FAA5B4562,1,2,104906143,-1,78,1 Pfactor=413BEECCA267DA7CB595C493D77C7B31,1,2,104906261,-1,78,1 Pfactor=D3295FC127F1482F991B9173B42466A1,1,2,104906437,-1,78,1 Pfactor=F0FF6213F1A861773290F3C7C48F2A3C,1,2,104908169,-1,78,1 Pfactor=FFEC8497092C99133F517435A6654FB5,1,2,104908723,-1,78,1 Pfactor=66414D4DA16A4BF62D4F7B68377AE21B,1,2,104909683,-1,78,1 Pfactor=8289B99F180DFE2D1E4FBA68C202A370,1,2,104909807,-1,78,1 Pfactor=8522FF16C0A27DFCADCB1AB9CCFC82E9,1,2,104909869,-1,78,1 Pfactor=74A05DA30FA49AA8A598843DBF9831B6,1,2,104910467,-1,78,1 Pfactor=8B2D32BC2FEA77970B30E2FD8587FBE5,1,2,104910527,-1,78,1 Pfactor=123BD572A5AB48FADEE6A731380E6818,1,2,104911171,-1,78,1 Pfactor=E5835C559F4E34865FC10F1D49D87122,1,2,104911259,-1,78,1 Pfactor=C1F460DCBFB6619E26AAFCC53739A7DE,1,2,104911273,-1,78,1 Pfactor=8DC67F32B37E52D17535C258DE5653A0,1,2,104911493,-1,78,1 Pfactor=4D27AB23E72D896AFAC0DE36F536E806,1,2,104911511,-1,78,1 Pfactor=A8EDF3EBA8C9BC5308A958962545D71B,1,2,104911549,-1,78,1 Pfactor=C654B737FC8B9DEED07BCFDCF6DEB0A3,1,2,104911591,-1,78,1 Pfactor=6F189B867F3E1F94FD50A52C9BD3111E,1,2,104911889,-1,78,1 Pfactor=9B8D0651F8A578A5D179749DE8AA993D,1,2,104911969,-1,78,1 Pfactor=53DF6A9FF369595C9652F76CB83C9520,1,2,104911979,-1,78,1 Pfactor=50D4088CC869EC3B88A262320ACEF757,1,2,104912099,-1,78,1 Pfactor=BB67AA1AE2BF97A55D9B339037DEBDEB,1,2,104912147,-1,78,1 Pfactor=ECB0CBCA063875F9911F92F938FF2D64,1,2,104912351,-1,78,1 Pfactor=08AC6C408005CB39218F67BBFD1F6CF4,1,2,104914421,-1,78,1 Pfactor=4F0DC9AB6E3E0159C82A95BCC994FA05,1,2,104914729,-1,78,1 Pfactor=F53E880884514CC7BA3C8ADA9E93B184,1,2,104914987,-1,78,1 Pfactor=015F77BF233F755011E3E8EA853C5DC5,1,2,104915123,-1,78,1 Pfactor=0FB9808D80F660BA69ED4F4AC8FE85CE,1,2,104915329,-1,78,1 Pfactor=50658AACD8BA19D4B6CF00D18BF4F21F,1,2,104917471,-1,78,1 Pfactor=5D794C9BEE6CDB08F72E569B39A45295,1,2,104917643,-1,77,1 Pfactor=48A0E261131A2DED69EAC0548919BC5E,1,2,104918003,-1,78,1 Pfactor=EEDDAA03232420CEBF6C94B351CB9874,1,2,104918537,-1,77,1 Pfactor=02916DE31935B7622CB5B438F1749A15,1,2,104918591,-1,78,1 Pfactor=8B8E6441E4920F7725C90FDFD2EC161E,1,2,104920111,-1,78,1 Pfactor=0444C335D27BFAF21FC3B75C3DD8E90E,1,2,104920303,-1,78,1 Pfactor=BFA593D4156F4210EB3EAFABD700316D,1,2,104920367,-1,78,1 Pfactor=541F4A9916BEABA710D591E7289A5AFB,1,2,104920877,-1,78,1 Pfactor=D8A54FB9AD0F2D9A650A6369D6781D8D,1,2,104921923,-1,78,1 Pfactor=9D847AB487933CD5A1CF4E704CD2CA19,1,2,104921989,-1,78,1 Pfactor=B686D1A8F117C51D628CAE02EA7AC6ED,1,2,104922331,-1,78,1 Pfactor=F7423BDD23FCCD1F328B7E341AC98445,1,2,104922613,-1,78,1 Pfactor=951477C5CC75578E888326D6F9B2807A,1,2,104922773,-1,78,1 Pfactor=58FB813852F7C608EFE8A4FFB93845E8,1,2,104922859,-1,78,1 Pfactor=8321868D62C0DAA0550F6104E0D6BE9E,1,2,104923081,-1,78,1 Pfactor=869482CCE263FCC867BA77B08623C3A2,1,2,104923121,-1,78,1 Pfactor=488BFA4F547ECB48CA804DC265AD3D23,1,2,104923207,-1,78,1 Pfactor=6CA6FF59ACB543A8A133B12164BCA96A,1,2,104923229,-1,78,1 Pfactor=0C5BA146FA4DA1BC4E735F2CBA7D3F4A,1,2,104923307,-1,78,1 Pfactor=7169C5DC58E3E6C75DC1C4A7F67B51FB,1,2,104923333,-1,78,1 Pfactor=B57A87CB548F709240438FD37A8ED499,1,2,104924177,-1,78,1 Pfactor=BA91FF4483C21ED2EC0586CAED5ED55B,1,2,104924249,-1,78,1 Pfactor=1E152B1E2A4CB0F04A84601FE36F696F,1,2,104924299,-1,78,1 Pfactor=A3BE958073B5DF073126263FF2DCC6A4,1,2,104929067,-1,78,1 Pfactor=FE585A31D6136A1033B953E6BBD9221F,1,2,104929189,-1,77,1 Pfactor=E7E48CAFD795F24C398A737D346DEE83,1,2,104929379,-1,78,1 Pfactor=410E4A431E0EF4733B86A3C0EBC554B9,1,2,104929663,-1,77,1 Pfactor=B4CF31463D2FFC68C5EB3D0FB9FC2901,1,2,104929681,-1,78,1 Pfactor=3E03B9C069911CA2CF46D058CCFBC592,1,2,104934281,-1,78,1 Pfactor=5ED677B490A447343ADFEB67E4D0DAA6,1,2,104934413,-1,78,1 Pfactor=F5B0E5C1C6B0829499864ADB99728CD7,1,2,104934439,-1,78,1 Pfactor=1F13AAD36A11E91FD8E7FB7906CBCD9A,1,2,104946313,-1,77,1 Pfactor=37B23C5570EB673C30A2F93B7357FC77,1,2,104950583,-1,78,1 Pfactor=340AC708F7DD8FB851ED659E0D662F7A,1,2,104955359,-1,77,1 Last fiddled with by Prime95 on 2023-01-27 at 19:04 Reason: Claims being removed |
![]() |
![]() |
![]() |
#3 |
"Cong Shengzhuo"
Sep 2021
Nanjing, China
43 Posts |
![]()
Just add them to your "worktodo.txt" file.
An original "worktodo.txt" often looks like this Code:
[Worker #1] DoubleCheck=[some random assignment code],64590839,74,1 PRP=[some random assignment code],1,2,113700893,-1,79,0 Code:
[Worker #1] Pfactor=[something] Pfactor=[something] Pfactor=[more thing] DoubleCheck=[some random assignment code],64590839,74,1 PRP=[some random assignment code],1,2,113700893,-1,79,0 Last fiddled with by congsz on 2022-09-03 at 12:33 |
![]() |
![]() |
![]() |
#4 |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
26·5·23 Posts |
![]()
Like any manually obtained assignment; stop prime95's computation (Test, Stop), copy paste into prime95's worktodo.txt with a text editor & save changes & exit, then Test, Continue in prime95; Advanced, Manual communication, check Send new expected completion dates to server, OK (which switches the reservations to you, if it can register them with the server). And post here what you've claimed. (Very similar process to the directions here.) Or for mprime, the numbered-menu equivalent.
I see you're new to the forum. You may find some of the reference info useful or interesting. I'll work on this block: Code:
Pfactor=121A68F7153A29C5ECA580A00C229F0D,1,2,63267409,-1,75,1 to Pfactor=B93285D5FD03BA2CCE9D3517BFC27F21,1,2,63271763,-1,75,1 Last fiddled with by Prime95 on 2022-09-03 at 17:49 Reason: Noted claims, removed them from the list. |
![]() |
![]() |
![]() |
#5 |
1976 Toyota Corona years forever!
"Wayne"
Nov 2006
Saskatchewan, Canada
149B16 Posts |
![]()
Absolutely Stage 2 is fastest with all cores and lots of RAM. But I find Stage 1 is slower in that setup.
This requires some manual intervention but I get the best total thruput if I: 1. Run 4 workers but only 1 HIGHMEMWORKERS; so at any point 3 are doing Stage 1 and 1 Stage 2. 2. This quickly results in a Stage 2 backlog; cores having to skip all the Stage-1-done work. 3. So once a week or two I restart with all the Stage 2 work stacked up and 1 worker 4 cores. I believe another option is to: 1. Run all your assignments Stage 1 only with 4 workers realizing the results will be reported.; make sure you save the Stage1 work files 2. Reque all the work for Stage2 with 1 worker; the Stage2 result will also be reported. BTW on my 8 core I only run 4 workers x 2 cores for Stage 1. Even with a liquid cooler 4x2 give me Temps just over 80. 8x1 gives me Temps of 90; too hot for my liking. Stage 2 with 1 worker x 8 cores give me low 70's. |
![]() |
![]() |
![]() |
#6 | |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
26·5·23 Posts |
![]() Quote:
At higher exponent, such as first-test wavefront, two cores/worker becomes closer to optimal in the benchmark timings, so the case for two workers then becomes stronger. Experimenting with increasing allowed ram, prime95 imposed an upper limit of ~57.4GiB allowed ram for stage 2, for an attempt on ~67M on the 64GiB system. On other systems, containing 128 GiB installed ram, prime95 accepted the highest attempted, 110GiB. At wavefront or somewhat higher these ran ok. At p~551M, it appears that around 27% of the way through stage 2, it began thrashing badly, not logging further progress for more than a day. Last fiddled with by kriesel on 2022-09-14 at 17:47 |
|
![]() |
![]() |
![]() |
#7 |
P90 years forever!
Aug 2002
Yeehaw, FL
815210 Posts |
![]()
BTW, thanks to all for getting us well ahead of the DC wavefront. A few expiring assignments below the wavefront will appear from time-to-time, but there should be no problem from now on keeping ahead of the DC wavefront.
|
![]() |
![]() |
![]() |
#8 | |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
26·5·23 Posts |
![]() Quote:
However, Mlucas 20.1 supports traditional bounds OBD P-1 of which johnny_jack and I have a few under way, and Mlucas also supports somewhat higher for Mersennes, and up to F33 P-1 which Ernst Mayer has under way. Think ~ a year per OBD exponent on medium speed machines. And at least 64 GiB ram, more is better, for OBD. ECC type and enabled is recommended for such long runs. Pre-qualifying hardware on smaller exponents with known factors to confirm reliability and determine run time scaling allowing extrapolation to Gdigit is recommended. To do OBD P-1 on GPU would require modifying gpuowl to larger fft sizes than it currently supports. And LOTS of on-GPU ram; 16GiB on radeon VII, Tesla P100, etc. is about enough for 1.46Gbit Mersennes in gpuowl v6.11, almost 1Gbit in V7.x. I don't know of any GPUs offering more than 48GiB yet. Except perhaps this, but that's out of nearly everyone's price range. The preceding is partly a rehash of the exponent limits reference info post. Last fiddled with by kriesel on 2022-10-28 at 17:15 |
|
![]() |
![]() |
![]() |
#9 | |
"mrh"
Oct 2018
Temecula, ca
2·32·5 Posts |
![]() Quote:
![]() |
|
![]() |
![]() |
![]() |
#10 |
"TF79LL86GIMPS96gpu17"
Mar 2017
US midwest
26·5·23 Posts |
![]() |
![]() |
![]() |
![]() |
#11 |
"James Heinrich"
May 2004
ex-Northern Ontario
4,073 Posts |
![]()
Claiming:
Pfactor=0F31F773E7803BCD9177A794225E942F,1,2,85349807,-1,77,1 to Pfactor=0307B430913824CA2BEC59F394AB974E,1,2,85406911,-1,77,1 edit: range completed, found 2 factors: M85351163 has a factor: 6582679500630930530062633 (P-1, B1=415000, B2=88044000) M85405897 has a factor: 7091352346301817991540489 (P-1, B1=434000, B2=89378850) Last fiddled with by James Heinrich on 2022-11-15 at 15:55 Reason: Noted claims, removed them from the list. |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Strategic couple and dribble checks (PRP's, P-1's, and special Certs too) | Uncwilly | Marin's Mersenne-aries | 18 | 2023-01-29 02:33 |
GMP-Ecm as Pm1 requires very little RAM | jocelynl1204 | Data | 11 | 2021-03-02 16:32 |
Strategic Double Clicking | Madpoo | Marin's Mersenne-aries | 1841 | 2019-07-16 03:30 |
factorial puzzle (requires maths) | graeme | Puzzles | 7 | 2003-08-19 20:40 |
Perfect shuffling puzzle (requires programming) | NickGlover | Puzzles | 18 | 2003-07-26 01:10 |