![]() |
![]() |
#1 |
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36
2·7·263 Posts |
![]()
There is a "Five or bust!" project, to search the primes of the form 2^n+k for all odd numbers k<78557, this is because 2^n+k is the dual of k*2^n+1. For k*2^n-1, the dual of it is |2^n-k|.
The project found the probable primes 2^1518191+75353, 2^2249255+28433, 2^4583176+2131, 2^5146295+41693, and 2^9092392+40291. For generalized Sierpinski/Riesel conjecture to base b, the dual of k*b^n+1 is (b^n+k)/gcd(b^n, k), and the dual of k*b^n-1 is (|b^n-k|)/gcd(b^n, k). These are the dual (probable) primes that I found of the Sierpinski/Riesel conjectures that has only one k remaining for bases b<=144: (See http://mersenneforum.org/showpost.ph...42&postcount=1) form dual form least prime for the "dual form" dual n 2036*9^n+1 9^n+2036 9^4+2036 4 7666*10^n+1 (10^n+7666)/2 (10^67+7666)/2 67 244*17^n+1 17^n+244 17^838+244 838 5128*22^n+1 (22^n+5128)/8 (22^11+5128)/8 11 398*27^n+1 27^n+398 27^7+398 7 166*43^n+1 43^n+166 ? (>1000) 17*68^n+1 (68^n+17)/17 (68^1+17)/17 1 1312*75^n+1 75^n+1312 ? (>1000) 8*86^n+1 (86^n+8)/8 (86^205+8)/8 205 32*87^n+1 87^n+32 ? (>1000) 1696*112^n+1 (112^n+1696)/32 (112^44+1696)/32 44 48*118^n+1 (118^n+48)/16 (118^57+48)/16 57 34*122^n+1 (122^n+34)/2 (122^2+34)/2 2 40*128^n+1 (128^n+40)/8 (128^2+40)/8 2 form dual form least prime for the "dual form" dual n 1597*6^n-1 |6^n-1597| |6^3-1597| 3 4421*10^n-1 |10^n-4421| |10^212-4421| 212 3656*22^n-1 (|22^n-3656|)/8 ? (>1000) 404*23^n-1 |23^n-404| |23^568-404| 568 706*27^n-1 |27^n-706| |27^2-706| 2 424*93^n-1 |93^n-424| |93^1-424| 1 29*94^n-1 |94^n-29| |94^2-29| 2 924*103^n-1 |103^n-924| |103^1-924| 1 84*109^n-1 |109^n-84| |109^6-84| 6 24*123^n-1 (|123^n-24|)/3 (|123^5-24|)/3 5 926*133^n-1 |133^n-926| |133^2-926| 2 Last fiddled with by sweety439 on 2016-12-07 at 15:03 |
![]() |
![]() |
![]() |
Thread Tools | |
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
The dual Sierpinski/Riesel problem | sweety439 | sweety439 | 15 | 2022-01-26 23:43 |
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem | sweety439 | sweety439 | 11 | 2020-09-23 01:42 |
Very Prime Riesel and Sierpinski k | robert44444uk | Open Projects | 587 | 2016-11-13 15:26 |
Sierpinski/Riesel Base 10 | rogue | Conjectures 'R Us | 11 | 2007-12-17 05:08 |
Sierpinski / Riesel - Base 23 | michaf | Conjectures 'R Us | 2 | 2007-12-17 05:04 |