mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > FermatSearch

Reply
 
Thread Tools
Old 2022-01-31, 02:43   #34
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

2×3×52×23 Posts
Default

n=170-190 finally finished:

Code:
no factor for k*2^170+1 in k range: 1100000000000000 to 1125899906842623 (220-bit factors) [mmff 0.28 mfaktc_barrett220_F160_191gs]
no factor for k*2^170+1 in k range: 1125899906842624 to 1400000000000000 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1100000000000000 to 1125899906842623 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1125899906842624 to 1400000000000000 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1100000000000000 to 1125899906842623 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1125899906842624 to 1400000000000000 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1100000000000000 to 1125899906842623 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1125899906842624 to 1400000000000000 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1100000000000000 to 1125899906842623 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1125899906842624 to 1400000000000000 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1100000000000000 to 1125899906842623 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1125899906842624 to 1400000000000000 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1100000000000000 to 1125899906842623 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1125899906842624 to 1400000000000000 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1100000000000000 to 1125899906842623 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1125899906842624 to 1400000000000000 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1100000000000000 to 1125899906842623 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1125899906842624 to 1400000000000000 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1100000000000000 to 1125899906842623 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1125899906842624 to 1400000000000000 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1100000000000000 to 1125899906842623 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1125899906842624 to 1400000000000000 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1100000000000000 to 1125899906842623 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1125899906842624 to 1400000000000000 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1100000000000000 to 1125899906842623 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1125899906842624 to 1400000000000000 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1100000000000000 to 1125899906842623 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1125899906842624 to 1400000000000000 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1100000000000000 to 1125899906842623 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1125899906842624 to 1400000000000000 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1100000000000000 to 1125899906842623 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1125899906842624 to 1400000000000000 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1100000000000000 to 1125899906842623 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1125899906842624 to 1400000000000000 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1100000000000000 to 1125899906842623 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1125899906842624 to 1400000000000000 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1100000000000000 to 1125899906842623 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1125899906842624 to 1400000000000000 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1100000000000000 to 1125899906842623 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1125899906842624 to 1400000000000000 (240-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^190+1 in k range: 1130T to 1400T (241-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]

Last fiddled with by ATH on 2022-01-31 at 02:50
ATH is offline   Reply With Quote
Old 2022-01-31, 14:53   #35
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

4,861 Posts
Default

Quote:
Originally Posted by ATH View Post
n=170-190 finally finished:

Code:
no factor for k*2^170+1 in k range: 1100000000000000 to 1125899906842623 (220-bit factors) [mmff 0.28 mfaktc_barrett220_F160_191gs]
no factor for k*2^170+1 in k range: 1125899906842624 to 1400000000000000 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1100000000000000 to 1125899906842623 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1125899906842624 to 1400000000000000 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1100000000000000 to 1125899906842623 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1125899906842624 to 1400000000000000 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1100000000000000 to 1125899906842623 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1125899906842624 to 1400000000000000 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1100000000000000 to 1125899906842623 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1125899906842624 to 1400000000000000 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1100000000000000 to 1125899906842623 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1125899906842624 to 1400000000000000 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1100000000000000 to 1125899906842623 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1125899906842624 to 1400000000000000 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1100000000000000 to 1125899906842623 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1125899906842624 to 1400000000000000 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1100000000000000 to 1125899906842623 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1125899906842624 to 1400000000000000 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1100000000000000 to 1125899906842623 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1125899906842624 to 1400000000000000 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1100000000000000 to 1125899906842623 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1125899906842624 to 1400000000000000 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1100000000000000 to 1125899906842623 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1125899906842624 to 1400000000000000 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1100000000000000 to 1125899906842623 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1125899906842624 to 1400000000000000 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1100000000000000 to 1125899906842623 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1125899906842624 to 1400000000000000 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1100000000000000 to 1125899906842623 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1125899906842624 to 1400000000000000 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1100000000000000 to 1125899906842623 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1125899906842624 to 1400000000000000 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1100000000000000 to 1125899906842623 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1125899906842624 to 1400000000000000 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1100000000000000 to 1125899906842623 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1125899906842624 to 1400000000000000 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1100000000000000 to 1125899906842623 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1125899906842624 to 1400000000000000 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1100000000000000 to 1125899906842623 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1125899906842624 to 1400000000000000 (240-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^190+1 in k range: 1130T to 1400T (241-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
Thank you!

Last fiddled with by ET_ on 2022-01-31 at 14:53
ET_ is offline   Reply With Quote
Old 2022-03-14, 10:13   #36
matzetoni
 
matzetoni's Avatar
 
Feb 2019

6116 Posts
Default

Finished GFN divisor range n=22001-25000, k=2M-3M


No GFN divisor found :(


I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo


EDIT: should have posted in gfn results
Attached Files
File Type: zip gfnd_n22001-25000_k2M-3M.zip (784.7 KB, 109 views)

Last fiddled with by matzetoni on 2022-03-14 at 10:17
matzetoni is offline   Reply With Quote
Old 2022-03-14, 13:52   #37
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

4,861 Posts
Default

Quote:
Originally Posted by matzetoni View Post
Finished GFN divisor range n=22001-25000, k=2M-3M


No GFN divisor found :(


I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo


EDIT: should have posted in gfn results
Thank you for the update.

Dis you send the results file to Prof. Keller?

Luigi
---
ET_ is offline   Reply With Quote
Old 2022-03-22, 02:57   #38
Gary
 
Gary's Avatar
 
"Gary Gostin"
Aug 2015
Texas, USA

7×11 Posts
Default

Quote:
Originally Posted by matzetoni View Post
Finished GFN divisor range n=22001-25000, k=2M-3M

No GFN divisor found :(

I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo
I tested your list of PRPs (184211 unique numbers) and verified that none of them is a GFN divisor. This was a bit surprising since my estimate for this particular range was 2.5 GFN factors. Looks like you were just unlucky this time. I hope you have better luck with your next range!

BTW, I noticed that there were 8 duplicate PRPs in your list:

2059589*2^22485+1
2059719*2^22485+1
2215627*2^22250+1
2219569*2^22250+1
2306235*2^22713+1
2555325*2^23235+1
2860173*2^22950+1
2904049*2^22782+1

Apparently whichever sieve program you are using can generate duplicates.
Gary is offline   Reply With Quote
Old 2022-08-23, 11:50   #39
matzetoni
 
matzetoni's Avatar
 
Feb 2019

97 Posts
Default

I have completed



FermatFactor=221,230,250000000000000,300000000000000


No factor found, result file is attached.
Attached Files
File Type: txt results_n221-230_k250e12-300e12.txt (1.9 KB, 58 views)
matzetoni is offline   Reply With Quote
Old 2022-08-23, 11:55   #40
matzetoni
 
matzetoni's Avatar
 
Feb 2019

11000012 Posts
Default

I used mtsieve for sieving. Could this be due to pfgw not updating the .ini file every tested number? So when I stop the running processes and restart, pfgw restarts somewhere before the last tested numbers and some numbers are tested twice, thus leading to a few duplicates.



Quote:
Originally Posted by Gary View Post
I tested your list of PRPs (184211 unique numbers) and verified that none of them is a GFN divisor. This was a bit surprising since my estimate for this particular range was 2.5 GFN factors. Looks like you were just unlucky this time. I hope you have better luck with your next range!

BTW, I noticed that there were 8 duplicate PRPs in your list:

2059589*2^22485+1
2059719*2^22485+1
2215627*2^22250+1
2219569*2^22250+1
2306235*2^22713+1
2555325*2^23235+1
2860173*2^22950+1
2904049*2^22782+1

Apparently whichever sieve program you are using can generate duplicates.
matzetoni is offline   Reply With Quote
Old 2022-08-23, 12:42   #41
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

31·233 Posts
Default

Quote:
Originally Posted by matzetoni View Post
I used mtsieve for sieving. Could this be due to pfgw not updating the .ini file every tested number? So when I stop the running processes and restart, pfgw restarts somewhere before the last tested numbers and some numbers are tested twice, thus leading to a few duplicates.
To reduce I/O on the .ini file pfgw will not write to it after every test. IIRC it writes at most once per second. These tests take less than a second.
rogue is offline   Reply With Quote
Old 2022-08-27, 03:04   #42
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

345010 Posts
Default

n=191-200 finished

Code:
no factor for k*2^191+1 in k range: 1130T to 1400T (242-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^192+1 in k range: 1130T to 1400T (243-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^193+1 in k range: 1130T to 1400T (244-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^194+1 in k range: 1130T to 1400T (245-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^195+1 in k range: 1130T to 1400T (246-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^196+1 in k range: 1130T to 1400T (247-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^197+1 in k range: 1130T to 1400T (248-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^198+1 in k range: 1130T to 1400T (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^199+1 in k range: 1130T to 1400T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 1130T to 1400T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
ATH is offline   Reply With Quote
Old 2022-12-24, 15:35   #43
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

31×233 Posts
Default

n=220 k from 30e13 to 35e13

This range is done. Nothing found
rogue is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Results ET_ Operazione Doppi Mersennes 693 2023-05-31 14:07
Where have all the TF results gone?... lycorn PrimeNet 22 2017-10-02 02:40
PGS Results danaj Prime Gap Searches 0 2017-08-14 18:35
CPU Results last 24 hrs Unregistered Information & Answers 3 2010-07-26 00:49
0x results... Mike PrimeNet 11 2004-05-23 12:55

All times are UTC. The time now is 05:55.


Mon Jun 5 05:55:31 UTC 2023 up 291 days, 3:24, 0 users, load averages: 0.67, 0.89, 1.11

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔