mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > FermatSearch

Reply
 
Thread Tools
Old 2016-07-02, 08:25   #1
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

12FD16 Posts
Default Results

[Placeholder]
ET_ is offline   Reply With Quote
Old 2016-07-17, 16:27   #2
firejuggler
 
firejuggler's Avatar
 
"Vincent"
Apr 2010
Over the rainbow

25×7×13 Posts
Default

result for F14000 to F14500, k=100e3 to 200e3 sieved with fermfact, checked with pfgw : 2 result, both know
116671*2^14364+1 is a Factor of xGF(14361,12,5)!!!!
180963*2^14228+1 is a Factor of xGF(14227,11,5)!!!!
firejuggler is offline   Reply With Quote
Old 2016-12-22, 03:46   #3
wombatman
I moo ablest echo power!
 
wombatman's Avatar
 
May 2013

26×29 Posts
Default

Code:
no factor for k*2^172+1 in k range: 281000000000000 to 281474976710655 (220-bit factors) [mmff 0.28 mfaktc_barrett220_F160_191gs]
no factor for k*2^172+1 in k range: 281474976710656 to 350000000000000 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 281000000000000 to 281474976710655 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 281474976710656 to 350000000000000 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 281000000000000 to 281474976710655 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 281474976710656 to 350000000000000 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^175+1 in k range: 281000000000000 to 281474976710655 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^175+1 in k range: 281474976710656 to 350000000000000 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^176+1 in k range: 281000000000000 to 281474976710655 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^176+1 in k range: 281474976710656 to 350000000000000 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 281000000000000 to 281474976710655 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 281474976710656 to 350000000000000 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 281000000000000 to 281474976710655 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 281474976710656 to 350000000000000 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 281000000000000 to 281474976710655 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 281474976710656 to 350000000000000 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
wombatman is offline   Reply With Quote
Old 2019-11-20, 06:46   #4
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

D7A16 Posts
Default

I admit I did some factoring without making a reservation but I did check the Reservation thread and here: http://www.fermatsearch.org/stat/running.php

I was running mmff-0.28 near the maximum range which is n<=223 and k*2n+1 <= 2252. I completed the maximum available ranges that mmff-0.28 can do:


Code:
no factor for k*2^205+1 in k range: 130000000000000 to 140737488355327 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^204+1 in k range: 130000000000000 to 140737488355327 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^204+1 in k range: 140737488355328 to 281474976710655 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^203+1 in k range: 130000000000000 to 140737488355327 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^203+1 in k range: 140737488355328 to 281474976710655 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^203+1 in k range: 281474976710656 to 562949953421311 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^202+1 in k range: 130000000000000 to 140737488355327 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^202+1 in k range: 140737488355328 to 281474976710655 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^202+1 in k range: 281474976710656 to 562949953421311 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^202+1 in k range: 562949953421312 to 1125899906842623 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

Last fiddled with by ATH on 2019-11-20 at 06:47
ATH is offline   Reply With Quote
Old 2019-11-22, 10:11   #5
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

4,861 Posts
Default

Quote:
Originally Posted by ATH View Post
I admit I did some factoring without making a reservation but I did check the Reservation thread and here: http://www.fermatsearch.org/stat/running.php

I was running mmff-0.28 near the maximum range which is n<=223 and k*2n+1 <= 2252. I completed the maximum available ranges that mmff-0.28 can do:


Code:
no factor for k*2^205+1 in k range: 130000000000000 to 140737488355327 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^204+1 in k range: 130000000000000 to 140737488355327 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^204+1 in k range: 140737488355328 to 281474976710655 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^203+1 in k range: 130000000000000 to 140737488355327 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^203+1 in k range: 140737488355328 to 281474976710655 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^203+1 in k range: 281474976710656 to 562949953421311 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^202+1 in k range: 130000000000000 to 140737488355327 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^202+1 in k range: 140737488355328 to 281474976710655 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^202+1 in k range: 281474976710656 to 562949953421311 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^202+1 in k range: 562949953421312 to 1125899906842623 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
Thank you Andreas!

Now I need some volunteering effort to close the gaps of the range 200-209 and take each N to the same level...
The request is addressed to everyone,and duplicated in the "Most wanted" thread
ET_ is offline   Reply With Quote
Old 2019-12-02, 06:09   #6
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

1101011110102 Posts
Default

no factor for k*2^201+1 in k range: 140000000000000 to 140737488355327 (248-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^201+1 in k range: 140737488355328 to 230000000000000 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^201+1 in k range: 230000000000000 to 281474976710655 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^201+1 in k range: 281474976710656 to 330000000000000 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 330T to 430T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 430T to 530T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 530000000000000 to 562949953421311 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 562949953421312 to 630000000000000 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 630T to 730T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 730T to 830T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 830T to 930T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 930T to 1030T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 1030000000000000 to 1125899906842623 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^201+1 in k range: 1125899906842624 to 1130000000000000 (252-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]

no factor for k*2^200+1 in k range: 130000000000000 to 140737488355327 (247-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^200+1 in k range: 140737488355328 to 230000000000000 (248-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 230000000000000 to 281474976710655 (248-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 281474976710656 to 330000000000000 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 330T to 430T (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 430T to 530T (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 530000000000000 to 562949953421311 (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^200+1 in k range: 562949953421312 to 630000000000000 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 630T to 730T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 730T to 830T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 830T to 930T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 930T to 1030T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 1030000000000000 to 1125899906842623 (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 1125899906842624 to 1130000000000000 (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
ATH is offline   Reply With Quote
Old 2020-11-19, 15:45   #7
MattcAnderson
 
MattcAnderson's Avatar
 
"Matthew Anderson"
Dec 2010
Oregon, USA

23·149 Posts
Default

I'm back at it. I have a dedicated machine for Fermat Factoring.


no factor for k*2^36+1 in k range: 700P to 705P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]

no factor for k*2^36+1 in k range: 705P to 720P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 720P to 735P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 735P to 745P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]

wish me luck
MattcAnderson is offline   Reply With Quote
Old 2020-11-24, 20:49   #8
MattcAnderson
 
MattcAnderson's Avatar
 
"Matthew Anderson"
Dec 2010
Oregon, USA

23×149 Posts
Thumbs up More about exponent 36

a small result to report ::

no factor for k*2^36+1 in k range: 745P to 755P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]

Regards,
Matt
MattcAnderson is offline   Reply With Quote
Old 2020-12-06, 06:56   #9
MattcAnderson
 
MattcAnderson's Avatar
 
"Matthew Anderson"
Dec 2010
Oregon, USA

23×149 Posts
Default

more negative results

no factor for k*2^36+1 in k range: 755P to 765P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 765P to 775P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 775P to 785P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]


Regards,
Matt
MattcAnderson is offline   Reply With Quote
Old 2020-12-11, 04:43   #10
MattcAnderson
 
MattcAnderson's Avatar
 
"Matthew Anderson"
Dec 2010
Oregon, USA

23·149 Posts
Default

just to let you know,

no factor for k*2^36+1 in k range: 785P to 795P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]

Regards,
Matt
MattcAnderson is offline   Reply With Quote
Old 2020-12-23, 06:27   #11
MattcAnderson
 
MattcAnderson's Avatar
 
"Matthew Anderson"
Dec 2010
Oregon, USA

23·149 Posts
Default

some results


no factor for k*2^36+1 in k range: 795P to 805P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 805P to 815P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]
no factor for k*2^36+1 in k range: 815P to 825P (96-bit factors) [mmff 0.28 mfaktc_barrett96_F32_63gs]

Regards,
Matt
MattcAnderson is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Results ET_ Operazione Doppi Mersennes 693 2023-05-31 14:07
Where have all the TF results gone?... lycorn PrimeNet 22 2017-10-02 02:40
PGS Results danaj Prime Gap Searches 0 2017-08-14 18:35
CPU Results last 24 hrs Unregistered Information & Answers 3 2010-07-26 00:49
0x results... Mike PrimeNet 11 2004-05-23 12:55

All times are UTC. The time now is 06:45.


Thu Jun 1 06:45:36 UTC 2023 up 287 days, 4:14, 0 users, load averages: 0.96, 1.04, 1.07

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔