mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > Dobri

Reply
 
Thread Tools
Old 2022-10-09, 05:39   #1
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default Exponents of Known Mersenne Primes (Numerical Observations)

The first post of this thread shows the Hamming distances between the consecutive exponents of known Mersenne primes:

{1,2,1,2,3,1,2,2,3,3,2,6,4,4,5,4,5,5,6,8,4,5,7,5,7,11,11,10,11,10,8,9,9,9,8,11,12,11,11,12,13,11,13,17,11,13,11,14,12,13}.

Below is the Wolfram code used to plot a linear fit for said Hamming distances in the attached PDF file.
Code:
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1];base = 2; intlen = 27; 
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]];];
Print[hda];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Attached Files
File Type: pdf Hamming.pdf (7.6 KB, 44 views)
Dobri is offline   Reply With Quote
Old 2022-10-09, 18:57   #2
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

After dividing the Hamming distance by the average number of bits of the pairs of consecutive exponents, the linear fit gives a nearly horizontal line as shown in the attached image.
Code:
ClearAll;
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[1, nMp - 1]; base = 2; intlen = 27;
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/((Length[IntegerDigits[MpData[[ic - 1]], base]] + Length[IntegerDigits[MpData[[ic]], base]])/2);];
hdafit = LinearModelFit[hda, x, x];
Export["Hamming.jpg", Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	Hamming.jpg
Views:	109
Size:	26.9 KB
ID:	27427  
Dobri is offline   Reply With Quote
Old 2022-10-10, 05:36   #3
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

Let's put the meaning of the graph in post #2 at https://www.mersenneforum.org/showpo...10&postcount=2 into words:

The current estimate of the average base-2 Hamming distance per bit (HAMD/bit) between consecutive exponents of Mersenne primes is bounded in the interval (0.45, 0.5) with a tendency toward 0.5.

Last fiddled with by Dobri on 2022-10-10 at 05:38
Dobri is offline   Reply With Quote
Old 2022-10-10, 08:47   #4
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

In the attached image, a base-2 HAMD/bit graph for all consecutive primes ≤ 1000003 is shown for a partial comparison with the graph in the previous post #2 at https://mersenneforum.org/showpost.p...10&postcount=2.
The average base-2 HAMD/bit value for all consecutive primes is less than 0.2 and has a downward tendency with the increase of the number of primes included in the computation.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "HammingPerBitAllPrimes.jpg";
pmax = 1000003; np = PrimePi[pmax]; hda = ConstantArray[0, np-1]; base = 2; intlen = Length[IntegerDigits[pmax, base]];
p1 = 1; p2 = 2; ic = 0; While[p2 < pmax, p1 = p2; p2 = NextPrime[p2]; ic++; hda[[ic]] = HammingDistance[IntegerDigits[p1, base, intlen], IntegerDigits[p2, base, intlen]]/((Length[IntegerDigits[p1, base]] + Length[IntegerDigits[p2, base]])/2);];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, np}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, np}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	HammingPerBitAllPrimes.jpg
Views:	72
Size:	11.7 KB
ID:	27428  

Last fiddled with by Dobri on 2022-10-10 at 09:18
Dobri is offline   Reply With Quote
Old 2022-10-11, 05:39   #5
Dobri
 
"ม้าไฟ"
May 2018

22×5×23 Posts
Default

The dimensionless HAMD/bit term is also called normalized Hamming distance (NHD) which in general describes to what extent two strings are dissimilar.

The tendency for the exponents of Mersenne primes is NHD → 0.5 which corresponds to maximum entropy.
Dobri is offline   Reply With Quote
Old 2022-10-11, 06:25   #6
Dobri
 
"ม้าไฟ"
May 2018

1110011002 Posts
Default

Obviously, the tendency NHD → 0.5 becomes even more prominent when dividing by the bit length of the larger exponent of a pair of two consecutive exponents (zero padding applies without saying to the smaller exponent in this post and the previous posts) as shown in the attached image.
Code:
SetDirectory[NotebookDirectory[]];
fname = NotebookDirectory[] <> "NHD.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[1, nMp - 1]; base = 2; intlen = 27;
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = HammingDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/Length[IntegerDigits[MpData[[ic]], base]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	NHD.jpg
Views:	71
Size:	18.8 KB
ID:	27432  
Dobri is offline   Reply With Quote
Old 2022-10-11, 08:36   #7
Dobri
 
"ม้าไฟ"
May 2018

22×5×23 Posts
Default

The attached image shows the normalized Levenshtein distance (NLD) (it is obtained as "the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other", see https://en.wikipedia.org/wiki/Levenshtein_distance) between the consecutive exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "NLD.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1]; base = 2; intlen = Length[IntegerDigits[MpData[[nMp]], base]];
ic = 1; While[ic < nMp, ic++; hda[[ic - 1]] = EditDistance[IntegerDigits[MpData[[ic - 1]], base, intlen], IntegerDigits[MpData[[ic]], base, intlen]]/Length[IntegerDigits[MpData[[ic]], base]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	NLD.jpg
Views:	61
Size:	18.0 KB
ID:	27433  
Dobri is offline   Reply With Quote
Old 2022-10-11, 10:14   #8
Dobri
 
"ม้าไฟ"
May 2018

7148 Posts
Default

The attached image shows the lengths (non-normalized) of the longest common contiguous subsequences (LCS) between the consecutive exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "LCS.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, nMp - 1]; base = 2;
ic = 1; While[ic < nMp, ic++; intlen1 = Length[IntegerDigits[MpData[[ic - 1]], base]]; intlen2 = Length[IntegerDigits[MpData[[ic]], base]]; hda[[ic - 1]] = Length[LongestCommonSubsequence[IntegerDigits[MpData[[ic - 1]], base, intlen1], IntegerDigits[MpData[[ic]], base, intlen2]]];];
hdafit = LinearModelFit[hda, x, x];
Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]
Export[fname, Show[BarChart[hda], Plot[hdafit[x], {x, 1, nMp}], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	LCS.jpg
Views:	69
Size:	15.9 KB
ID:	27434  
Dobri is offline   Reply With Quote
Old 2022-10-11, 11:08   #9
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

The attached 2 images show the base-2 Smith-Waterman similarity (SWS.jpg, see https://en.wikipedia.org/wiki/Smith%...rman_algorithm, Wolfram function SmithWatermanSimilarity) and the base-2 Needleman-Wunsch similarity (NWS.jpg, see https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm, Wolfram function NeedlemanWunschSimilarity) between the consecutive exponents of known Mersenne primes.
Attached Thumbnails
Click image for larger version

Name:	SWS.jpg
Views:	61
Size:	15.4 KB
ID:	27435   Click image for larger version

Name:	NWS.jpg
Views:	57
Size:	14.1 KB
ID:	27436  
Dobri is offline   Reply With Quote
Old 2022-10-11, 14:28   #10
Dobri
 
"ม้าไฟ"
May 2018

22·5·23 Posts
Default

The attached 3D image shows the lengths (non-normalized) of the longest common contiguous subsequences (LCS) between all pairs (i, j), i < j, for i, j = 1, 2,..., 51, of the exponents of known Mersenne primes.
Code:
SetDirectory[NotebookDirectory[]]; fname = NotebookDirectory[] <> "CLS3D.jpg";
MpData = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933};
nMp = Length[MpData]; hda = ConstantArray[0, {nMp, nMp}]; base = 2;
ic = 0; While[ic < nMp, ic++; jc = 0; While[jc < nMp, jc++; If[ic < jc,
   intlen1 = Length[IntegerDigits[MpData[[ic]], base]]; intlen2 = Length[IntegerDigits[MpData[[jc]], base]];
   hda[[ic, jc]] = Length[LongestCommonSubsequence[IntegerDigits[MpData[[ic]], base, intlen1], IntegerDigits[MpData[[jc]], base, intlen2]]];
];];];
Show[ListPlot3D[hda, InterpolationOrder -> 0, Filling -> Bottom], Frame -> True]
Export[fname, Show[ListPlot3D[hda, InterpolationOrder -> 0, Filling -> Bottom], Frame -> True]]
Attached Thumbnails
Click image for larger version

Name:	CLS3D.jpg
Views:	81
Size:	23.9 KB
ID:	27437  
Dobri is offline   Reply With Quote
Old 2022-10-11, 15:31   #11
Dobri
 
"ม้าไฟ"
May 2018

1110011002 Posts
Default

Here is an example of a 15-bit largest common subsequence:

Mersenne exponent #29 = 110503 = 110101111101001112, and
Mersenne exponent #39 = 13466917 = 1100110101111101001001012.
Dobri is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Mersenne prime exponents that are also Sophie Germain primes carpetpool Miscellaneous Math 5 2022-10-19 01:44
Additive Properties of the Exponents of Known Mersenne Primes Dobri Dobri 3 2021-10-05 06:56
Observations of Wieferich primes and Wieferich-1 friendly club hansl Math 3 2020-09-02 10:40
Sophie-Germain primes as Mersenne exponents ProximaCentauri Miscellaneous Math 15 2014-12-25 14:26
Assorted formulas for exponents of Mersenne primes Lee Yiyuan Miscellaneous Math 60 2011-03-01 12:22

All times are UTC. The time now is 03:44.


Wed Feb 8 03:44:12 UTC 2023 up 174 days, 1:12, 1 user, load averages: 0.52, 0.85, 0.94

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔