mersenneforum.org  

Go Back   mersenneforum.org > Factoring Projects > FermatSearch

Reply
 
Thread Tools
Old 2022-01-31, 02:43   #34
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

2×1,723 Posts
Default

n=170-190 finally finished:

Code:
no factor for k*2^170+1 in k range: 1100000000000000 to 1125899906842623 (220-bit factors) [mmff 0.28 mfaktc_barrett220_F160_191gs]
no factor for k*2^170+1 in k range: 1125899906842624 to 1400000000000000 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1100000000000000 to 1125899906842623 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1125899906842624 to 1400000000000000 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1100000000000000 to 1125899906842623 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1125899906842624 to 1400000000000000 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1100000000000000 to 1125899906842623 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1125899906842624 to 1400000000000000 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1100000000000000 to 1125899906842623 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1125899906842624 to 1400000000000000 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1100000000000000 to 1125899906842623 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1125899906842624 to 1400000000000000 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1100000000000000 to 1125899906842623 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1125899906842624 to 1400000000000000 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1100000000000000 to 1125899906842623 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1125899906842624 to 1400000000000000 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1100000000000000 to 1125899906842623 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1125899906842624 to 1400000000000000 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1100000000000000 to 1125899906842623 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1125899906842624 to 1400000000000000 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1100000000000000 to 1125899906842623 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1125899906842624 to 1400000000000000 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1100000000000000 to 1125899906842623 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1125899906842624 to 1400000000000000 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1100000000000000 to 1125899906842623 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1125899906842624 to 1400000000000000 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1100000000000000 to 1125899906842623 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1125899906842624 to 1400000000000000 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1100000000000000 to 1125899906842623 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1125899906842624 to 1400000000000000 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1100000000000000 to 1125899906842623 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1125899906842624 to 1400000000000000 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1100000000000000 to 1125899906842623 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1125899906842624 to 1400000000000000 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1100000000000000 to 1125899906842623 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1125899906842624 to 1400000000000000 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1100000000000000 to 1125899906842623 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1125899906842624 to 1400000000000000 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1100000000000000 to 1125899906842623 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1125899906842624 to 1400000000000000 (240-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^190+1 in k range: 1130T to 1400T (241-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]

Last fiddled with by ATH on 2022-01-31 at 02:50
ATH is offline   Reply With Quote
Old 2022-01-31, 14:53   #35
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

43×113 Posts
Default

Quote:
Originally Posted by ATH View Post
n=170-190 finally finished:

Code:
no factor for k*2^170+1 in k range: 1100000000000000 to 1125899906842623 (220-bit factors) [mmff 0.28 mfaktc_barrett220_F160_191gs]
no factor for k*2^170+1 in k range: 1125899906842624 to 1400000000000000 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1100000000000000 to 1125899906842623 (221-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^171+1 in k range: 1125899906842624 to 1400000000000000 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1100000000000000 to 1125899906842623 (222-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^172+1 in k range: 1125899906842624 to 1400000000000000 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1100000000000000 to 1125899906842623 (223-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^173+1 in k range: 1125899906842624 to 1400000000000000 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1100000000000000 to 1125899906842623 (224-bit factors) [mmff 0.28 mfaktc_barrett224_F160_191gs]
no factor for k*2^174+1 in k range: 1125899906842624 to 1400000000000000 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1100000000000000 to 1125899906842623 (225-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^175+1 in k range: 1125899906842624 to 1400000000000000 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1100000000000000 to 1125899906842623 (226-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^176+1 in k range: 1125899906842624 to 1400000000000000 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1100000000000000 to 1125899906842623 (227-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^177+1 in k range: 1125899906842624 to 1400000000000000 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1100000000000000 to 1125899906842623 (228-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^178+1 in k range: 1125899906842624 to 1400000000000000 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1100000000000000 to 1125899906842623 (229-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^179+1 in k range: 1125899906842624 to 1400000000000000 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1100000000000000 to 1125899906842623 (230-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^180+1 in k range: 1125899906842624 to 1400000000000000 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1100000000000000 to 1125899906842623 (231-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^181+1 in k range: 1125899906842624 to 1400000000000000 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1100000000000000 to 1125899906842623 (232-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^182+1 in k range: 1125899906842624 to 1400000000000000 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1100000000000000 to 1125899906842623 (233-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^183+1 in k range: 1125899906842624 to 1400000000000000 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1100000000000000 to 1125899906842623 (234-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^184+1 in k range: 1125899906842624 to 1400000000000000 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1100000000000000 to 1125899906842623 (235-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^185+1 in k range: 1125899906842624 to 1400000000000000 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1100000000000000 to 1125899906842623 (236-bit factors) [mmff 0.28 mfaktc_barrett236_F160_191gs]
no factor for k*2^186+1 in k range: 1125899906842624 to 1400000000000000 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1100000000000000 to 1125899906842623 (237-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^187+1 in k range: 1125899906842624 to 1400000000000000 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1100000000000000 to 1125899906842623 (238-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^188+1 in k range: 1125899906842624 to 1400000000000000 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1100000000000000 to 1125899906842623 (239-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^189+1 in k range: 1125899906842624 to 1400000000000000 (240-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^190+1 in k range: 1130T to 1400T (241-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
Thank you!

Last fiddled with by ET_ on 2022-01-31 at 14:53
ET_ is offline   Reply With Quote
Old 2022-03-14, 10:13   #36
matzetoni
 
matzetoni's Avatar
 
Feb 2019

6116 Posts
Default

Finished GFN divisor range n=22001-25000, k=2M-3M


No GFN divisor found :(


I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo


EDIT: should have posted in gfn results
Attached Files
File Type: zip gfnd_n22001-25000_k2M-3M.zip (784.7 KB, 92 views)

Last fiddled with by matzetoni on 2022-03-14 at 10:17
matzetoni is offline   Reply With Quote
Old 2022-03-14, 13:52   #37
ET_
Banned
 
ET_'s Avatar
 
"Luigi"
Aug 2002
Team Italia

43×113 Posts
Default

Quote:
Originally Posted by matzetoni View Post
Finished GFN divisor range n=22001-25000, k=2M-3M


No GFN divisor found :(


I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo


EDIT: should have posted in gfn results
Thank you for the update.

Dis you send the results file to Prof. Keller?

Luigi
---
ET_ is offline   Reply With Quote
Old 2022-03-22, 02:57   #38
Gary
 
Gary's Avatar
 
"Gary Gostin"
Aug 2015
Texas, USA

1108 Posts
Default

Quote:
Originally Posted by matzetoni View Post
Finished GFN divisor range n=22001-25000, k=2M-3M

No GFN divisor found :(

I attached all PRPs I found, maybe someone run a short divisor double check on them with pfgw64 -gxo
I tested your list of PRPs (184211 unique numbers) and verified that none of them is a GFN divisor. This was a bit surprising since my estimate for this particular range was 2.5 GFN factors. Looks like you were just unlucky this time. I hope you have better luck with your next range!

BTW, I noticed that there were 8 duplicate PRPs in your list:

2059589*2^22485+1
2059719*2^22485+1
2215627*2^22250+1
2219569*2^22250+1
2306235*2^22713+1
2555325*2^23235+1
2860173*2^22950+1
2904049*2^22782+1

Apparently whichever sieve program you are using can generate duplicates.
Gary is offline   Reply With Quote
Old 2022-08-23, 11:50   #39
matzetoni
 
matzetoni's Avatar
 
Feb 2019

97 Posts
Default

I have completed



FermatFactor=221,230,250000000000000,300000000000000


No factor found, result file is attached.
Attached Files
File Type: txt results_n221-230_k250e12-300e12.txt (1.9 KB, 39 views)
matzetoni is offline   Reply With Quote
Old 2022-08-23, 11:55   #40
matzetoni
 
matzetoni's Avatar
 
Feb 2019

1418 Posts
Default

I used mtsieve for sieving. Could this be due to pfgw not updating the .ini file every tested number? So when I stop the running processes and restart, pfgw restarts somewhere before the last tested numbers and some numbers are tested twice, thus leading to a few duplicates.



Quote:
Originally Posted by Gary View Post
I tested your list of PRPs (184211 unique numbers) and verified that none of them is a GFN divisor. This was a bit surprising since my estimate for this particular range was 2.5 GFN factors. Looks like you were just unlucky this time. I hope you have better luck with your next range!

BTW, I noticed that there were 8 duplicate PRPs in your list:

2059589*2^22485+1
2059719*2^22485+1
2215627*2^22250+1
2219569*2^22250+1
2306235*2^22713+1
2555325*2^23235+1
2860173*2^22950+1
2904049*2^22782+1

Apparently whichever sieve program you are using can generate duplicates.
matzetoni is offline   Reply With Quote
Old 2022-08-23, 12:42   #41
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

2×3×52×47 Posts
Default

Quote:
Originally Posted by matzetoni View Post
I used mtsieve for sieving. Could this be due to pfgw not updating the .ini file every tested number? So when I stop the running processes and restart, pfgw restarts somewhere before the last tested numbers and some numbers are tested twice, thus leading to a few duplicates.
To reduce I/O on the .ini file pfgw will not write to it after every test. IIRC it writes at most once per second. These tests take less than a second.
rogue is online now   Reply With Quote
Old 2022-08-27, 03:04   #42
ATH
Einyen
 
ATH's Avatar
 
Dec 2003
Denmark

2·1,723 Posts
Default

n=191-200 finished

Code:
no factor for k*2^191+1 in k range: 1130T to 1400T (242-bit factors) [mmff 0.28 mfaktc_barrett247_F160_191gs]
no factor for k*2^192+1 in k range: 1130T to 1400T (243-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^193+1 in k range: 1130T to 1400T (244-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^194+1 in k range: 1130T to 1400T (245-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^195+1 in k range: 1130T to 1400T (246-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^196+1 in k range: 1130T to 1400T (247-bit factors) [mmff 0.28 mfaktc_barrett247_F192_223gs]
no factor for k*2^197+1 in k range: 1130T to 1400T (248-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^198+1 in k range: 1130T to 1400T (249-bit factors) [mmff 0.28 mfaktc_barrett249_F192_223gs]
no factor for k*2^199+1 in k range: 1130T to 1400T (250-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
no factor for k*2^200+1 in k range: 1130T to 1400T (251-bit factors) [mmff 0.28 mfaktc_barrett252_F192_223gs]
ATH is offline   Reply With Quote
Old 2022-12-24, 15:35   #43
rogue
 
rogue's Avatar
 
"Mark"
Apr 2003
Between here and the

2·3·52·47 Posts
Default

n=220 k from 30e13 to 35e13

This range is done. Nothing found
rogue is online now   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Results ET_ Operazione Doppi Mersennes 679 2023-03-18 12:25
Where have all the TF results gone?... lycorn PrimeNet 22 2017-10-02 02:40
PGS Results danaj Prime Gap Searches 0 2017-08-14 18:35
CPU Results last 24 hrs Unregistered Information & Answers 3 2010-07-26 00:49
0x results... Mike PrimeNet 11 2004-05-23 12:55

All times are UTC. The time now is 20:51.


Tue Mar 21 20:51:19 UTC 2023 up 215 days, 18:19, 0 users, load averages: 0.82, 0.94, 0.91

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔