mersenneforum.org  

Go Back   mersenneforum.org > Other Stuff > Open Projects

Reply
 
Thread Tools
Old 2008-02-09, 05:12   #23
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5×379 Posts
Default

Sorry been out of the loop. Here is the list from last week on new Payam VPS 61's

R 4237605251199 61 100/9042 101/10000 117/20000 129/48714
R 3454244358239 61 100/6100 107/10000 115/20000
R 4484344243755 61 100/9481 104/10000 112/20000
R 2997280737989 61 100/8210 100/10000 111/20000
R 4321264026225 61 100/9470 100/10000 111/20000
R 4445595365641 61 100/9822 100/10000 111/20000
R 2853368710009 61 100/9310 101/10000 110/20000
R 2958974750767 61 100/9898 101/10000 110/20000
R 3468108555441 61 100/9882 101/10000 110/20000
R 4470681532631 61 100/8372 100/10000 110/20000
R 2916740069451 61 100/8981 103/10000 109/20000
R 3462599603041 61 100/8954 101/10000 108/20000
R 4031837397447 61 100/8706 100/10000 106/20000
R 3441114290305 61 100/9546 100/10000 104/20000

Near misses

R 3396843248155 61 99/10000
R 3590636449447 61 99/10000
R 3812607361279 61 99/10000
R 3836786856915 61 99/10000
R 4281080931105 61 99/10000
robert44444uk is offline   Reply With Quote
Old 2009-09-23, 15:22   #24
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5·379 Posts
Default Most prime series yet

I am currently reexploring payam prime series, and as of tonight I have two new enormously prime series of the form y*M(83)*2^n+1, n from 1 to infinity, y fixed and M(83) the payam multiple of 3*5*11*13*19*29*37*53*59*61*67*83.

The two series have 134 and 129 primes at n=30,000. The more prime of the two is the fastest to 134 primes ever found, with the 134th prime reached at n=27,762.

I will post more details when I get to n=100,000, if these are still performing well (148 primes or more).

Last fiddled with by robert44444uk on 2009-09-23 at 15:24
robert44444uk is offline   Reply With Quote
Old 2009-09-23, 19:42   #25
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

1,409 Posts
Default

Robert, where can I find all known VPS Payam numbers?

Last fiddled with by R. Gerbicz on 2009-09-23 at 19:44
R. Gerbicz is offline   Reply With Quote
Old 2009-09-23, 23:19   #26
kar_bon
 
kar_bon's Avatar
 
Mar 2006
Germany

2·3·52·19 Posts
Default

Quote:
Originally Posted by R. Gerbicz View Post
Robert, where can I find all known VPS Payam numbers?
i've included some of the Riesel-side with data from Robert on www.rieselprime.de.

see menu 'Related -> Riesel-Payem"
kar_bon is offline   Reply With Quote
Old 2009-09-24, 15:25   #27
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5×379 Posts
Default

Quote:
Originally Posted by R. Gerbicz View Post
Robert, where can I find all known VPS Payam numbers?
You might look here, it is out of date a bit, but I am the only person on the planet looking at these right now (!!!!!!!!!!!)

So I will update when I get the chance

http://robert.smith44444.googlepages...umberresources

Download my paper

A Study of Very Prime Payam Number Series - Word document
robert44444uk is offline   Reply With Quote
Old 2009-09-24, 15:26   #28
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5·379 Posts
Default

Quote:
Originally Posted by robert44444uk View Post
I am currently reexploring payam prime series, and as of tonight I have two new enormously prime series of the form y*M(83)*2^n+1, n from 1 to infinity, y fixed and M(83) the payam multiple of 3*5*11*13*19*29*37*53*59*61*67*83.

The two series have 134 and 129 primes at n=30,000. The more prime of the two is the fastest to 134 primes ever found, with the 134th prime reached at n=27,762.

I will post more details when I get to n=100,000, if these are still performing well (148 primes or more).
Not performing well from 30K to 43K but will persist
robert44444uk is offline   Reply With Quote
Old 2009-09-27, 00:45   #29
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

1,409 Posts
Default

I'm writing a code in gmp for the problem.
R. Gerbicz is offline   Reply With Quote
Old 2009-09-27, 04:12   #30
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5·379 Posts
Default

Quote:
Originally Posted by R. Gerbicz View Post
I'm writing a code in gmp for the problem.
Brilliant!!! love to understand your approach.
robert44444uk is offline   Reply With Quote
Old 2009-09-28, 17:43   #31
R. Gerbicz
 
R. Gerbicz's Avatar
 
"Robert Gerbicz"
Oct 2005
Hungary

1,409 Posts
Default

Now I completed my code: have a look at my site: http://robert.gerbicz.googlepages.com/payam
This is all in one program, contains many type of sieves to speed up the code, but only one fermat test for the primality (so there is a very small chance that the correct number of primes is smaller than the displayed value).

When tested I found the following (new?) solutions (I stopped my programs, tested only E=52, not much about one-two day of computation).

(for these riesels lost the data when it hits the 100th prime.)
R 279853706635 52 100/10000 K=648615843039215090325
R 1498340918709 52 105/10000 K=3472698896270561741355
R 1238363638869 52 102/10000 K=2870150569996671516555

S 1067246716655 52 100/7771 103/10000 K=2473553547592864962225
S 2000762814915 52 100/9824 100/10000 K=4637160163149703256925
S 740179134037 52 100/9739 100/10000 K=1715510288558036485515
S 732686633037 52 100/6580 105/10000 K=1698144948248552890515
S 2524404303887 52 100/6046 104/10000 K=5850801997320093221265
S 982750260367 52 100/8532 101/10000 K=2277716440812829166865
S 864230647989 52 100/9769 100/10000 K=2003023998023424902955
S 197278850743 52 100/7259 105/10000 K=457232421993138948585

You need two files to use it (it will ask no additional input) in.txt contains various parameters for the problem. progress.txt has got only 4 values:
c, where c=1 (sierpinski) or c=-1 (riesel),

the E value,

the iteration number (this is counter of the outer cycle) iteration=0 solves the problem for the first about 3*10^12 K values, iteration=1 solves it in the (3*10^12,6*10^12) interval and so on.

But this would take days to complete an iteration so there is an inner cycle to divide one iteration to 120960 subproblems, this is the I value, by giving it the program will start from this I value. When I reaches 120960 then iteration will be bigger by one, and I=0.

The in.txt file is a little more complicated, there are some obvious parameters. Note that I'm computing also the Nash weight for the sequence, because by this I can predict the number of remaining primes, I'm using a weaker form (not to lost a solution): #(total number of primes found so far)+c0*#(expected number of primes from Nash)+c1. Increasing the c0,c1 value makes the sieve slower, but you can find a little more sequence. Balance this. If n reaches various number then I'm using a different sieve depth: number_of_sievebits is the levels for sieve, currently this is 7, and the offset:
11 64
13 128
15 256
18 512
21 1024
24 2048
27 4096
so sieving up to 2^11 if n=64 reached,..., up to 2^27 if n=4096 reached. Note that this is also the sievelimit=2^27.

Your heuristic check is also included (as smith check), the table is exactly what I found at your site (currently this means 8 levels).

Optimize these (you can change the number of levels, but use increasing order when you describe the levels). By setting zero for nash_check or smith_check you can disable these checks in the code.

By boundforquickcheck I make an additional quick elimination using many primes up to this bound. Currently this value should be good. Setting this very high is pointless (elminates very few sequences and takes time).

nashsievelimit is 500 currently. Note that this equals to the initial sieve depth. So if there is no Nash check, then not lower this value.

timesave 60. Saves the E,c,iteration,I values in progress.txt in every 60 seconds, but only if we are not checking a sequence, so it means that there will be a save only after half an hour if we are checking a very good payam.

In results.txt file I also save every vps numbers. The code is valid for E>=52.
Ask if you don't understand something.
R. Gerbicz is offline   Reply With Quote
Old 2009-09-29, 07:06   #32
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5·379 Posts
Default

Gosh, a new toy..thank you so much Robert, I will give this a go, that is for sure.

The list of payam VPS for Sierpinski, before R Gerbicz's discoveries, is:

Code:
Rank	E	y	n	p=primes	p/ln(n)	100 p at n=	Notes

1	59	708477982733	353045	169	 13.230 	7815	
2	59	201456540759	137581	152	 12.847 	6929	
3	107	224425208891	105413	148	 12.797 	7884	Done as 101-24013497351337
4	83	8648987274287	53961	139	 12.757 	7874	
5	83	2266756289325	51015	138	 12.731 	7034	
6	59	520294740741	123329	149	 12.710 	7970	
7	67	2158430601663	174566	153	 12.676 	5496	
8	53	748868434461	113183	147	 12.632 	4584	
9	67	4217062025887	170000	152	 12.621 	6634	
10	59	241489693273	126324	147	 12.514 	8938	
11	67	3830573300695	113977	145	 12.453 	6063	
12	59	49564242661	116957	144	 12.340 	5774	Done as 53- 2924290316999
13	67	244078509453	100112	142	 12.333 	9459	
14	67	3274457656551	128894	145	 12.323 	8422	
15	67	1691908298101	110287	143	 12.316 	6356	
16	59	748236995639	128980	144	 12.237 	6592	
17	59	33936630553	96274	140	 12.200 	7515	Done as 53-2002261202627
18	83	491867720503	88968	139	 12.197 	8064	
19	101	21475115323671	124388	143	 12.190 	9589	
20	101	95527332753853	112374	141	 12.124 	9694	
21	53	1108828374241	126708	142	 12.085 	3258	
22	101	100848501131179	135522	142	 12.017 	8240	
23	67	4169065599069	97356	138	 12.014 	9413	
24	61	761114361105	165526	144	 11.983 	9591	
25	53	2088021538507	121242	140	 11.960 	6029	
26	83	1198899076961	46968	128	 11.899 	7326	
27	101	154597862545015	85569	135	 11.887 	8916	
28	101	192982750577891	125493	139	 11.840 	7193	
29	53	2793145615989	70337	132	 11.827 	5621	
30	83	16606496583	40100	125	 11.793 	6110	Done as 67-1378339216389
31	67	132931011017	37004	124	 11.788 	4628	
32	59	354663797011	44321	126	 11.777 	8384	
33	83	2931487359433	75195	132	 11.756 	8094	
34	67	650072358489	27810	120	 11.727 	7482	
35	53	1030943838005	43187	125	 11.711 	7562	
36	83	5187739022961	28368	120	 11.704 	4951	
37	59	44549431055	36787	123	 11.700 	7066	
38	83	58721022127	31144	121	 11.695 	6179	
39	67	1639585686921	32011	121	 11.664 	8626	
40	59	581338538697	25170	118	 11.645 	9084	
41	53	1782926020855	25833	118	 11.615 	7256	
42	101	48568720015071	20000	115	 11.612 	7178	
43	53	2632245983931	28434	119	 11.604 	8276	
44	61	18450742305	37335	122	 11.588 	9462	
45	61	5274320251	31434	120	 11.588 	9603
46	101	3196190228975	29110	119	 11.577 	8490
47	67	2882469181769	31919	120	 11.571 	7824
48	53	1394429459529	24646	117	 11.570 	8420
49	107	39508074262189	38527	122	 11.554 	8399
50	53	246580719613	27749	118	 11.534 	7136
51	53	223580243791	33314	120	 11.523 	7687
52	67	2232861808559	28242	118	 11.514 	7652
53	83	1215507650411	47628	124	 11.512 	7597
54	83	7245887932337	20000	114	 11.511 	8903
55	67	4195586470999	22000	115	 11.501 	7595
56	67	135980427451	20230	114	 11.498 	9257
57	83	157639428379	26587	117	 11.484 	6690
58	67	643697078775	20560	114	 11.479 	9351
59	107	216263008344019	32592	119	 11.451 	9897
60	53	1106093443175	42374	122	 11.451 	9387
61	59	838422520523	25578	116	 11.429 	6134
62	101	7822821559961	25615	116	 11.428 	9987
63	67	1102272321579	20000	113	 11.410 	6881
64	83	2986006925223	20017	113	 11.409 	8415
65	67	755584622563	21960	114	 11.403 	9797
66	101	86475926712443	26415	116	 11.393 	7535
67	53	1439338251	27569	116	 11.345 	6149
68	53	181681767761	33197	118	 11.335 	7062
69	53	2562457278273	21555	113	 11.325 	8668
70	67	3626325799905	30739	117	 11.323 	8316
71	61	126014792173	52310	123	 11.321 	7542
72	53	887074003901	20000	112	 11.309 	9434
75	83	721457110513	20000	112	 11.309 	9531
74	83	4787038083625	20000	112	 11.309 	8794
73	83	10200107805041	20000	112	 11.309 	8118
76	53	2367521100037	20029	112	 11.307 	9590
77	83	5105032597357	21975	113	 11.303 	7080
78	101	171652306377675	20317	112	 11.291 	7261
79	67	1111147210737	22200	113	 11.291 	8002
80	67	2807554854083	24525	114	 11.279 	8779
81	67	14227569099675	18910	111	 11.272 	9610
82	67	1166880299109	18910	111	 11.272 	7795
83	101	75903439364915	27353	115	 11.256 	9297
84	101	19743600960335	27362	115	 11.256 	9487
85	61	583625072025	30000	116	 11.252 	8464
86	101	190423530464325	32919	117	 11.248 	9127
87	101	109139135495845	21162	112	 11.245 	9070
88	61	216022607101	27655	115	 11.244 	9149
89	67	133290101259	21460	112	 11.229 	9993
90	53	1322845239177	26088	114	 11.210 	9940
91	53	2732995339057	20000	111	 11.208 	7743
92	59	546421435843	20000	111	 11.208 	9134
93	59	387304364559	20000	111	 11.208 	8974
94	67	2934187788435	20000	111	 11.208 	9885
95	83	3966811064579	20000	111	 11.208 	9784
98	83	11613098507093	20000	111	 11.208 	9387
97	83	11730030736641	20000	111	 11.208 	9244
96	83	1268045994659	20000	111	 11.208 	7251
99	83	4189509745483	17000	109	 11.190 	7487
100	67	3953819504565	22500	112	 11.176 	9460
101	67	2528619568769	29523	115	 11.173 	8172
102	53	2618147732705	20640	111	 11.173 	8620
103	53	2206204972241	14450	107	 11.171 	9577
104	53	215886220855	14450	107	 11.171 	8682
105	53	2516441148893	14450	107	 11.171 	8541
106	53	1662290560099	14450	107	 11.171 	8127
107	53	2229929826019	14450	107	 11.171 	8097
108	59	68102182393	16000	108	 11.157 	9920
109	59	323109341021	16000	108	 11.157 	7841
110	67	1370090826199	21000	111	 11.153 	7906
111	67	3801806524317	30101	115	 11.152 	8197
112	37	198314124283	20000	110	 11.107 	9184
113	53	2030780730455	18289	109	 11.107 	9931
114	53	2630773010587	14115	106	 11.094 	8353
115	67	1789583243673	113765	129	 11.081 	6261
116	37	176776697181	10000	102	 11.075 	8030
117	67	4041645718707	10000	102	 11.075 	7549
118	67	3846443304797	10000	102	 11.075 	6356
119	53	879944491239	14450	106	 11.067 	9131
120	53	2291356967435	14450	106	 11.067 	9039
121	53	1806872869235	14450	106	 11.067 	8746
122	53	1390617022279	14450	106	 11.067 	8311
123	29	547038013	17442	108	 11.058 	8129
125	59	512528281705	16000	107	 11.053 	9418
124	59	177646354161	16000	107	 11.053 	9136
126	59	514472660303	16000	107	 11.053 	7819
127	67	498179107913	21010	110	 11.052 	9935
128	53	70073251271	16073	107	 11.048 	9977
129	59	636331922397	21148	110	 11.045 	7117
130	67	3026077759051	13500	105	 11.040 	9007
131	67	3794179552947	13500	105	 11.040 	8892
132	67	4152485119483	13500	105	 11.040 	8270
133	67	3384136174759	13500	105	 11.040 	8006
134	67	2253302898127	13500	105	 11.040 	7743
135	107	3528240874503	19549	109	 11.032 	8662
136	37	255911170795	19630	109	 11.027 	9086
137	67	143567524087	19712	109	 11.022 	9893
138	67	1175624915339	19800	109	 11.017 	8719
139	53	2662257628835	23752	111	 11.017 	8353
140	61	197793964319	28717	113	 11.008 	7081
141	29	373703051	20000	109	 11.006 	8409
142	61	48622210669	28850	113	 11.003 	8016
143	101	37933879098593	24224	111	 10.995 	9060
144	61	38886476903	31866	114	 10.994 	9793
145	83	4241660982683	10767	102	 10.986 	8096
146	67	18914454038503	18910	108	 10.967 	8397
147	59	708240321809	18931	108	 10.966 	8524
148	67	1583098704779	10000	101	 10.966 	8615
149	61	406713450161	27685	112	 10.950 	8263
150	83	2508280254913	12300	103	 10.937 	8884
151	83	3100447231731	12300	103	 10.937 	8183
152	67	2248422362825	13500	104	 10.935 	9920
153	67	925777324893	13500	104	 10.935 	9549
154	67	3213814677791	13500	104	 10.935 	9493
155	67	22334461555	13500	104	 10.935 	9443
156	67	2374195442249	13500	104	 10.935 	9362
157	67	1026619279015	13500	104	 10.935 	8930
158	107	171176144825869	28101	112	 10.934 	8473
159	59	491580860277	15000	105	 10.920 	9936
160	59	657752151441	15000	105	 10.920 	9444
161	61	195989400097	20000	108	 10.905 	9439
162	67	2093234092849	20000	108	 10.905 	8573
163	83	5855022739083	20000	108	 10.905 	8483
164	83	1806361620889	26341	111	 10.905 	7464
165	37	133581656467	18300	107	 10.902 	8013
166	53	768440105325	20749	108	 10.865 	9454
167	53	696219338021	14450	104	 10.858 	9515
168	53	1843822052193	14450	104	 10.858 	9132
169	53	2919421195929	14450	104	 10.858 	8597
170	53	1568680504507	14450	104	 10.858 	8526
171	83	3111030987175	25112	110	 10.858 	7841
172	37	218268558295	10000	100	 10.857 	9825
173	53	863106968087	10000	100	 10.857 	9947
174	53	1931888563731	10000	100	 10.857 	9796
175	101	88475910866235	10000	100	 10.857 	9725
176	83	4942274044547	12300	102	 10.831 	9730
177	67	1206204060651	13500	103	 10.830 	8839
178	67	325914572859	13500	103	 10.830 	8817
179	67	3977890351863	13500	103	 10.830 	7253
180	101	34964416850395	17860	106	 10.827 	9528
181	37	147377655077	20000	107	 10.804 	8008
183	83	9079836090073	20000	107	 10.804 	9726
182	83	12228640605139	20000	107	 10.804 	9666
184	53	685900043171	20347	107	 10.786 	9951
185	61	933294678535	14097	103	 10.781 	9866
186	53	353454181481	19030	106	 10.757 	8636
187	53	2530657964501	14450	103	 10.753 	9815
188	67	2158846621199	13500	102	 10.725 	8697
189	59	316104583913	15000	103	 10.712 	9910
190	83	5780208112465	18100	105	 10.710 	8853
191	67	3982074999875	21100	106	 10.646 	8634
192	53	415571569029	16073	103	 10.635 	9483
193	83	568584531317	12300	100	 10.619 	9899
194	61	586780960367	20499	105	 10.576 	9581
195	37	236033583093	19204	104	 10.545 	9545
robert44444uk is offline   Reply With Quote
Old 2009-09-29, 07:09   #33
robert44444uk
 
robert44444uk's Avatar
 
Jun 2003
Oxford, UK

5×379 Posts
Default

And that for Riesels (sorry for any duplicates):

Code:
Rank	E	y	n	p=primes	p/ln(n)	100p at n=	Discoverer
1	60	638621868573	233805	162	 13.104 	8110	R. Chaglassian
2	58	196866927943	75000	145	 12.917 	6617	R. Chaglassian
3	100	38612012001591	70000	143	 12.818 	6306	R Smith
4	82	1634620998691	75000	142	 12.650 	7237	R. Chaglassian
5	82	1923109539243	75000	140	 12.472 	6261	R. Chaglassian
6	58	660288556697	76281	140	 12.453 	6167	R Smith
7	82	534443544481	75000	139	 12.383 	9749	R. Chaglassian
8	60	868800846205	75000	138	 12.294 	9686	R. Chaglassian
9	82	2903265685133	75000	138	 12.294 	8077	R. Chaglassian
10	82	3595866123809	75924	138	 12.280 	9210	R Smith
11	106	336458226173	74709	137	 12.209 	9642	R Smith
12	52	98213127897	75000	137	 12.205 	6863	R. Chaglassian
13	66	295804381687	50000	132	 12.200 	8984	R. Chaglassian
14	60	2342836014713	70629	136	 12.181 	6520	R Smith
15	52	72702941519	75000	136	 12.116 	6724	R. Chaglassian
16	58	782507407593	75000	136	 12.116 	7734	R. Chaglassian
17	60	4237605251199	48714	129	 11.951 	9042	R Smith
18	60	4832067885263	20000	118	 11.915 	6538	R Smith
19	82	7987188035689	36772	124	 11.795 	7043	R Smith
20	82	2173328761571	19656	115	 11.632 	9653	R Smith
21	58	543298716599	21723	116	 11.616 	5768	R Smith
22	52	169160174245	20000	115	 11.612 	8191	R Smith
23	58	810747927647	20000	115	 11.612 	7248	R Smith
24	60	3454244358239	20000	115	 11.612 	6100	R Smith
25	60	189018321331	58808	127	 11.564 	7788	R Smith
26	52	114230062971	20000	114	 11.511 	9945	R Smith
27	52	1029369515711	20000	114	 11.511 	8895	R Smith
28	58	736928023853	20000	114	 11.511 	8642	R Smith
29	58	736928023853	20000	114	 11.511 	8642	R Smith
30	60	4821660919323	20000	114	 11.511 	8444	R Smith
31	100	159929185703	20000	114	 11.511 	8646	R Smith
32	66	3614192791887	15284	110	 11.417 	8863	R Smith
33	58	98708132615	20000	113	 11.410 	8756	R Smith
34	60	303323448333	20000	113	 11.410 	7996	R Smith
35	106	506972504569	20120	113	 11.403 	8564	R Smith
36	106	408251547745613	10000	105	 11.400 	8230	R Smith
37	82	5938953888893	19907	112	 11.314 	9010	R Smith
38	82	7425115793209	19907	112	 11.314 	9042	R Smith
39	52	42509546845	20000	112	 11.309 	5748	R Smith
40	52	89843365969	20000	112	 11.309 	8758	R Smith
41	52	150889892985	20000	112	 11.309 	9968	R Smith
42	58	782507407593	20000	112	 11.309 	7734	R Smith
43	60	4484344243755	20000	112	 11.309 	9481	R Smith
44	100	82206833338609	20000	112	 11.309 	7531	R Smith
45	58	222325060763	10000	104	 11.292 	7832	R Smith
46	52	3680068181457	13301	107	 11.268 	7836	R Smith
47	66	2517038016555	14840	108	 11.244 	7397	R Smith
48	82	2295909940011	19656	111	 11.228 	7195	R Smith
49	58	795329018075	23591	113	 11.223 	9934	R Smith
50	82	6442859915349	19907	111	 11.213 	9281	R Smith
51	52	1636889512137	20000	111	 11.208 	7724	R Smith
52	58	635481469401	20000	111	 11.208 	9208	R Smith
53	58	211956740839	20000	111	 11.208 	9545	R Smith
54	60	90779697267	20000	111	 11.208 	7307	R Smith
55	60	2997280737989	20000	111	 11.208 	8210	R Smith
56	60	4321264026225	20000	111	 11.208 	9470	R Smith
57	60	4445595365641	20000	111	 11.208 	9822	R Smith
58	52	688812815683	10000	103	 11.183 	8559	R Smith
59	82	38367867040615	10000	103	 11.183 	6920	R Smith
60	106	5858856352434629	10000	103	 11.183 	9050	R Smith
61	52	1212241451853	20000	110	 11.107 	8256	R Smith
62	58	52839326407	20000	110	 11.107 	9218	R Smith
63	58	1633249508195	20000	110	 11.107 	9807	R Smith
64	58	776579546957	20000	110	 11.107 	8448	R Smith
65	60	2853368710009	20000	110	 11.107 	9310	R Smith
66	60	2958974750767	20000	110	 11.107 	9898	R Smith
67	60	3468108555441	20000	110	 11.107 	9882	R Smith
68	60	4470681532631	20000	110	 11.107 	8372	R Smith
69	60	5160537303507	20000	110	 11.107 	9855	R Smith
70	66	29979474409	28913	114	 11.098 	5968	R Smith
71	58	469387109359	10000	102	 11.075 	8147	R Smith
72	58	557419349873	10000	102	 11.075 	8916	R Smith
73	58	1313295408947	10000	102	 11.075 	8233	R Smith
74	58	1319596402677	10000	102	 11.075 	8786	R Smith
75	60	1746492605077	10000	102	 11.075 	8014	R Smith
76	60	2319747344799	10000	102	 11.075 	9595	R Smith
77	66	10941694057	10000	102	 11.075 	8831	R Smith
78	66	3385909902081	10000	102	 11.075 	8063	R Smith
79	82	61976585459877	10000	102	 11.075 	8600	R Smith
80	106	101532422035567	10000	102	 11.075 	9253	R Smith
81	52	3995993454669	13301	105	 11.058 	9870	R Smith
82	82	701334132961	19656	109	 11.026 	9968	R Smith
83	100	43468118077543	20000	109	 11.006 	8452	R Smith
84	58	678487262125	20000	109	 11.006 	9376	R Smith
85	58	395178526267	20000	109	 11.006 	9409	R Smith
86	58	182579377155	20000	109	 11.006 	9520	R Smith
87	60	2916740069451	20000	109	 11.006 	8981	R Smith
88	106	158227976455	20000	109	 11.006 	9886	R Smith
89	130	1060872021917	24537	111	 10.981 	9726	R Smith
90	37	93061801369	26905	112	 10.980 	7480	R Smith
91	52	276458718213	10000	101	 10.966 	9684	R Smith
92	58	151403071919	10000	101	 10.966 	7717	R Smith
93	58	211956740839	10000	101	 10.966 	9545	R Smith
94	58	950392115281	10000	101	 10.966 	9073	R Smith
95	60	502968170927	10000	101	 10.966 	8247	R Smith
96	66	167928198647	10000	101	 10.966 	9822	R Smith
97	66	1876131394595	10000	101	 10.966 	8443	R Smith
98	82	272478401987	10000	101	 10.966 	8515	R Smith
99	82	63404089076241	10000	101	 10.966 	8159	R Smith
100	106	5071829957884753	10000	101	 10.966 	8856	R Smith
101	66	2211264287175	14840	105	 10.932 	8856	R Smith
102	66	2364307317539	14840	105	 10.932 	9294	R Smith
103	82	3329128302189	19656	108	 10.924 	9216	R Smith
104	52	1043827764761	20000	108	 10.905 	8888	R Smith
105	60	3462599603041	20000	108	 10.905 	8954	R Smith
106	37	4111071389	10000	100	 10.857 	8813	R Smith
107	58	141016944033	10000	100	 10.857 	9936	R Smith
108	58	805479768391	10000	100	 10.857 	8477	R Smith
109	60	2502262772385	10000	100	 10.857 	9732	R Smith
110	60	2781948761147	10000	100	 10.857 	9271	R Smith
111	60	2256305169303	10000	100	 10.857 	9821	R Smith
112	60	2476995416951	10000	100	 10.857 	9951	R Smith
113	60	2421745267415	10000	100	 10.857 	9769	R Smith
114	66	6085263665	10000	100	 10.857 	9492	R Smith
115	66	1416492589021	10000	100	 10.857 	8013	R Smith
116	66	1533927640019	10000	100	 10.857 	9972	R Smith
117	66	1842913644031	10000	100	 10.857 	9937	R Smith
118	66	1970620879533	10000	100	 10.857 	9500	R Smith
119	82	1019383426867	19656	107	 10.823 	9527	R Smith
120	52	39954902847	20000	107	 10.804 	9846	R Smith
121	58	452026989743	20000	107	 10.804 	9528	R Smith
122	60	5365195396417	20000	107	 10.804 	9016	R Smith
123	52	68110929705	20000	106	 10.703 	7339	R Smith
124	58	1513926608167	20000	106	 10.703 	9879	R Smith
125	58	795329018075	20000	106	 10.703 	9934	R Smith
126	60	4031837397447	20000	106	 10.703 	8706	R Smith
127	82	2653731528155	19656	104	 10.520 	9599	R Smith
128	60	3441114290305	20000	104	 10.501 	9546	R Smith
129	58	640953612177	20000	102	 10.299 	9084	R Smith
robert44444uk is offline   Reply With Quote
Reply

Thread Tools


Similar Threads
Thread Thread Starter Forum Replies Last Post
Semiprime and n-almost prime candidate for the k's with algebra for the Sierpinski/Riesel problem sweety439 sweety439 11 2020-09-23 01:42
Dual Sierpinski/Riesel prime sweety439 Conjectures 'R Us 0 2016-12-07 15:01
Sierpinski/ Riesel bases 6 to 18 robert44444uk Conjectures 'R Us 139 2007-12-17 05:17
Sierpinski/Riesel Base 10 rogue Conjectures 'R Us 11 2007-12-17 05:08
Sierpinski / Riesel - Base 22 michaf Conjectures 'R Us 49 2007-12-17 05:03

All times are UTC. The time now is 09:42.

Thu Oct 22 09:42:58 UTC 2020 up 42 days, 6:53, 0 users, load averages: 1.31, 1.73, 1.73

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.