20160422, 15:18  #12  
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
3×29×83 Posts 
Quote:
2) I've just discovered that the binaries produced by building CADO include polyselect, which does "stage 1" and size opt at the same time, as well as a separate sopt binary which takes "raw" polynomials (presumably the results of the hashtable search...?) for size opting as well, and the equivalent output of either binary can then be fed to polyselect_ropt whose function should be obvious in this context. 3) I've just started a run of the latter for my Aliquot 4788 efforts, and it seems that it prints the input values to the MurphyE score as well as the score itself, so I guess we can compare against whatever Msieve uses (though I don't really feel like digging through its source, maybe you can comment? Here's an example:) Code:
### rootoptimized polynomial 13 ### # n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 # Y0: 36095620248719813997359851316167411851 # Y1: 287364767617774550963053 # c0: 56088615892505493935209426379951715142392160 # c1: 144890118607664376088446114937854122208 # c2: 8348445372213634471790816940388 # c3: 28963477043189504738748320 # c4: 11102776326974469 # c5: 1725480 # skew: 3267584.000 # # lognorm 63.38, alpha 5.35 (proj 1.53), E 58.03, 3 real roots # # MurphyE(Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16)=3.27e15 ### Best MurphyE so far is 4.50e15 

20160423, 07:20  #13 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
3·29·83 Posts 
Err... I may be misinterpreting the .ms file (been years since I worked with one), but... were you searching for degree 6 polys...?

20160423, 13:09  #14 
"Curtis"
Feb 2005
Riverside, CA
1001010101011_{2} Posts 
Nope, definitely degree 5.

20160423, 17:43  #15 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
3×29×83 Posts 
Could you help me spot my error then?
Here's the code (msieve/gnfs/poly/poly_skew.c): Code:
static void sizeopt_callback_log(uint32 deg, mpz_t *alg_coeffs, mpz_t *rat_coeffs, double sizeopt_norm, double projective_alpha, void *extra) { uint32 i; FILE *mfile = (FILE *)extra; for (i = deg; (int32)i >= 0; i) gmp_fprintf(mfile, "%Zd ", alg_coeffs[i]); gmp_fprintf(mfile, "%Zd %Zd %.2lf %le\n", rat_coeffs[1], rat_coeffs[0], projective_alpha, exp(projective_alpha) * sizeopt_norm); fflush(mfile); } Code:
971700 273849234706546 225962405583700796407442 84054861767065123330509949866 29517104017082095088929447630073626321 3262277732054109330095369390256411899572767 1660633240515241123 40487932918725137061265492892721380626 1.59 1.338783e+25 628488 25807572840266955 303999146710932834523652 3119549682722644921895399900207 14123903064615248232023501030205940006 48260972168255749244473149176534441863659851 29048885255261071969 44174601963086515462086860672795847500 1.77 1.614272e+25 546960 5605325602623737 1955381755454195745958 6621960285938958484871001763602 1854857638980877962690869298795624892 1032866398309654043779803193974135126928581602 4835900641980806243 45419351810482876976420189466026262897 1.37 1.842692e+25 Last fiddled with by Dubslow on 20160423 at 17:53 
20160424, 02:28  #16 
"Curtis"
Feb 2005
Riverside, CA
12AB_{16} Posts 
No idea, sir but the polys in msieve.log are degree 5, and I am certain I didn't invoke the degree=6 flag in the command line. Msieve doesn't pick degree 6 on its own...
Try running npr on the file from msieve to convince yourself? Last fiddled with by VBCurtis on 20160424 at 02:28 
20160424, 02:52  #17 
"Jonathan"
Jul 2010
In a tangled web...
2×107 Posts 

20160424, 06:14  #18  
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
3×29×83 Posts 
Quote:
Thanks Obviously I'm rusty. 

20160425, 05:52  #19 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
7221_{10} Posts 
General note  before realizing that CADO can and will happily read Msieve format size opted polys, I wrote a short Python script to convert formats. Unfortunately, it took me a few days (only 20 minutes of actual effort) to discover that having more than one blank line separating polys in the file is beyond CADO's ability to parse. Just a heads up, and for future reference.

20160426, 23:26  #20 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
1C35_{16} Posts 
Okay, here's the results from my cluster of messing around with CADO.
A search of LCs from 010M (only those divisible by 60, per CADO default) (roughly 3 CPU days), then passing the top 500 size norm hits to CADO rootopt, produced the following top 5 polys (I have all 500 available): Code:
n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 62078976.0 c0: 2078861482606939262732348788772234729500066505 c1: 81452413435682187177974315743754413126 c2: 1256739981486858947548697657268 c3: 22396930453004670461906 c4: 263922878237933 c5: 2547840 Y0: 33388556319178604525067212126801994606 Y1: 96874809441465515717599 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 1.16e14 # lognorm 59.06 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 57720832.0 c0: 17160072336623445558486491447680793046654059460 c1: 1654348007928800032775401504767487803936 c2: 28947429876755966986844833643017 c3: 946553263211289715531399 c4: 3924318619058088 c5: 5516640 Y0: 47025518976311715704856348352373464079 Y1: 176154525925723359784759 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.85e15 # lognorm 61.5 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 25583616.0 c0: 685992159184539512613548044513984252041883140 c1: 134610898781364897801610290286626955999 c2: 7109903060621761009580559757488 c3: 238819588636731179920283 c4: 8746008810620432 c5: 53587200 Y0: 27519388373819676833051410839329305921 Y1: 1839671560743535632496133 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.51e15 # lognorm 60.22 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 14503936.0 c0: 65698494574585654869665676718988331163562112 c1: 97332536632788185915561208310178169236 c2: 371931585676372953901140963249 c3: 870401356387883046717037 c4: 910339736204828 c5: 3553440 Y0: 41220600122861670237999244493991322477 Y1: 118715258484298437008683 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 7.93e15 # lognorm 60.58 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 58310656.0 c0: 18280501391805263953245129313762844281481248662 c1: 646040699763406262391803981659489087237 c2: 36712368286900883073060051628284 c3: 529564887634112218615187 c4: 6061192475321092 c5: 10035120 Y0: 33492176102045778534763735786623971315 Y1: 2449174464852706655304347 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 7.81e15 # lognorm 61.1 And secondly, I also ran an identical rootsieve of VBCurtis' top 500 Msieve GPU stage 1 and sizeopt hits (~2 weeks GPU+CPU time?), which produced the following top 5 (again, all 500 available upon request): Code:
n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 146997248.0 c0: 131414304044478185366394231747951586868400235157 c1: 4029601527701148189310418069976213395221 c2: 30149105678605166244788285142337 c3: 268424081661710226278041 c4: 1338222885809036 c5: 1505028 Y0: 37095662305095086253404478445430777250 Y1: 9762700048268674463 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 9.54e15 # lognorm 61.02 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 115310592.0 c0: 72654783078207317663016087360899076774225974549 c1: 13183316839111760341950789781721971964575 c2: 29276900156268889268041437680369 c3: 1780141248353293122105769 c4: 1020057436955814 c5: 912600 Y0: 40999253791772676218846852869952650362 Y1: 4848218606269847041 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.51e15 # lognorm 62.36 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 81494016.0 c0: 98942718328354657571921135515000654102809275280 c1: 1094123364329131040120216467254391237420 c2: 65859755925338247464662996618032 c3: 1618738878212462977815579 c4: 4830711805039576 c5: 687420 Y0: 43389796499263425737859091822712579063 Y1: 47084851870118530061 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.25e15 # lognorm 62.48 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 81166336.0 c0: 45557711067352835790870412530520906044046352000 c1: 538182327666734598053665140544142650228 c2: 35247498407001430812508122651020 c3: 85598128594418788150756 c4: 4204857918193797 c5: 1081860 Y0: 39627605646451711638391781283296477421 Y1: 9440158732784987191 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.21e15 # lognorm 61.04 n: 105720747827131650775565137946594727648048676926428801477497713261333062158444658783837181718187127016255169032147325982158719006483898971407998273736975091062494070213867530300194317862973608499 skew: 54214656.0 c0: 21724609728591871248210729947586274756512302379 c1: 317862276216193685941919711583925203153 c2: 10170954010451741993810971872497 c3: 13022944940440380507497 c4: 8295877607702306 c5: 1175280 Y0: 38976584207204966069784298467971861060 Y1: 559932214212309221 # MurphyE (Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16) = 8.17e15 # lognorm 61.54 Note that CADO's default "rootsieve effort" is 5, on a scale of 110; one line of inquiry for the next poly search is to see if effort 10 over say, 50 or 100 hits is better than effort 5 over 500 hits. And btw, I definitely vote for taking the log of Murphy E in much the same way CADO takes the log of the sizeopt norm. Last fiddled with by Dubslow on 20160426 at 23:39 
20160628, 14:10  #21  
"Max"
Jun 2016
Toronto
5×11×13 Posts 
CADO size optimization of MSIEVE polynomial
Quote:
I need help sizeoptimizing the following msieve poly (http://stdkmd.com/nrr/c.cgi?q=68881_216) in cado: Code:
# Murphy_E = 4.296e12 # expecting poly E from 4.51e012 to > 5.19e012; sieved all c5 < 564 n: 6964469412395724414400887219282737626566096536914345017855771078382532118955354745772117936678678317022004114419569353913029298176668228168002524415033 Y0: 719974750345759133972843201212 Y1: 2509148016863593 c0: 645947407201258180676614400938960976175 c1: 123446188733445544772289511592948 c2: 18319373780518695347898595 c3: 2567126999321415502 c4: 18908689182 c5: 36 skew: 32970491.17 When I pass the msieve polynomial to polyselect_ropt, the best output is: Code:
# Best polynomial found: n: 6964469412395724414400887219282737626566096536914345017855771078382532118955354745772117936678678317022004114419569353913029298176668228168002524415033 Y0: 719974797818859686216157669956 Y1: 2509148016863593 c0: 74098902767640540677544413831582460335175 c1: 3710094808934559412128037232637690 c2: 120979270663498122139675645 c3: 1007248783970378638 c4: 22314290622 c5: 36 skew: 63127552.000 # lognorm 48.59, alpha 7.30 (proj 1.24), E 41.28, 5 real roots # MurphyE(Bf=1.00e+07,Bg=5.00e+06,area=1.00e+16)=4.12e12 I didn't do actual sieving, just trying to compare Murphy_E scores. 

20160629, 04:02  #22 
Basketry That Evening!
"Bunslow the Bold"
Jun 2011
40<A<43 89<O<88
3·29·83 Posts 
Code:
bill@Gravemind⌚2258 ~/cado/build/Gravemind/polyselect ∰∂ ls  grep v "[Cc]1" cadops.bash CMakeFiles cmake_install.cmake CTestTestfile.cmake dlpolyselect libpolyselect_common.a Makefile ms_to_cado.py num polyselect polyselect_ropt rotate rotate_all sopt sort_polys.py sys For instance I wrote this small bash script to glue things together for a starttostop polyselect run: Code:
bill@Gravemind⌚2300 ~/cado/build/Gravemind/polyselect ∰∂ cat cadops.bash #! /usr/bin/env bash n=51703345090678007603283094883953312763757798669035713906213433384993369348322376058745609326491127794881496108288948261956762322783390589392048698391 name=C149_3408_1631 threads=8 # Typically you should copy these from cado/parameters/factor/params.cxxx deg=5 P=500000 admin=0 admax=20000000 incr=60 nq=1000 keep=900 ############################################################################## # http://stackoverflow.com/a/9194117/1497645 # Round admin up to nearest multiple of incr admin=$(( ((admin + incr  1) / incr) * incr )) f1="$name.sizeopt" f2="$name.rootopt" nice n 19 ./polyselect degree "$deg" P "$P" admax "$admax" nq "$nq" keep "$keep" t "$threads" N "$n"  tee "$f1" cmd="./sort_polys.py $f1 $keep" $cmd && nice n 19 ./polyselect_ropt inputpolys "$f1.sorted" t "$threads"  tee "$f2" ./sort_polys.py "$f2" Code:
bill@Gravemind⌚2300 ~/cado/build/Gravemind/polyselect ∰∂ cat sort_polys.py #! /usr/bin/env python3 import sys sys.path.append('/home/bill/cado/scripts/cadofactor') from cadotask import Polynomials, PolynomialParseException def read_blocks(input): """ Return blocks of consecutive nonempty lines from input Whitespace is stripped; a line containing only whitespace is considered empty. An empty block is never returned. >>> list(Polysel1Task.read_blocks(['', 'a', 'b', '', 'c', '', '', 'd', 'e', ''])) [['a', 'b'], ['c'], ['d', 'e']] """ block = [] for line in input: line = line.strip() if line: block.append(line) else: if block: yield block block = [] if block: yield block def parse_block(block): try: poly = Polynomials(block) except: print(block) raise if not poly: raise ValueError("useless poly:\n{}".format(block)) return poly def sort(filename, keep=None): lst = [] with open(filename, 'r') as f: for block in read_blocks(f): if '### rootoptimized polynomial' in block[0]: # For whatever reason, all output from `polyselect_ropt` is prefaced by "# ", # so remove it block = [line[2:] for line in block if '# Stat:' not in line] # The very last output poly has no blank line between it and stat output, so # knock that out here lst.append(parse_block(block)) elif any('# Sizeoptimized polynomial:' in line for line in block): lst.append(parse_block(block)) print("Read {} polys from {}".format(len(lst), filename)) have_murphyE = bool(lst[0].MurphyE) if have_murphyE: if not all(poly.MurphyE for poly in lst): raise ValueError("Some polys have MurphyE, some don't") key, reverse = lambda poly: poly.MurphyE, True else: if any(poly.MurphyE for poly in lst): raise ValueError("Some polys have MurphyE, some don't") key, reverse = lambda poly: poly.lognorm, False lst.sort(key=key, reverse=reverse) if keep: lst = lst[:keep] with open(filename+'.sorted', 'w') as g: for poly in lst: poly = '\n'.join(l for l in str(poly).splitlines() if '(x) =' not in l) g.write(poly+'\n\n') if __name__ == '__main__': filename = sys.argv[1] keep = None if len(sys.argv) > 2: keep = int(sys.argv[2]) sort(filename, keep) Last fiddled with by Dubslow on 20160629 at 04:04 
Thread Tools  
Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
Base method of montgomery polyselect implementation  csg  Homework Help  2  20171213 07:04 
Mac Os X binaries  ValerieVonck  Software  6  20120515 20:27 
To CPU or to GPU: stage1 polyselect research  Karl M Johnson  Msieve  8  20111112 19:46 
Binaries for 64bit windows  smh  Programming  31  20080903 09:18 
Need binaries for Solaris x64  rgiltrap  Software  4  20060427 06:55 