Thread: Covering sets View Single Post
 2016-04-04, 18:34 #11 robert44444uk     Jun 2003 Oxford, UK 191810 Posts ...and this produces 1 left with one fewer prime, so full cover at 641#. The cover is provided by the following CRT problem, and the prime 229. Actually there are many, many solutions given that the last 17 primes on this list only contribute to eliminating 1 integer in the sequence, each. [0,2],[0,3],[0,5],[0,7],[4,11],[5,13],[10,23],[0,31],[49,61],[15,17],[4,83],[22,43],[21,29],[39,103],[14,59],[13,37],[5,41],[36,67],[3,19],[29,47],[29,71],[62,151],[9,53],[68,149],[99,139],[4,131],[32,127],[64,79],[42,113],[30,73],[8,109],[45,107],[3,101],[40,197],[170,193],[20,89],[83,181],[85,163],[81,157],[100,137],[332,373],[222,353],[130,311],[170,307],[30,97],[102,293],[198,281],[225,269],[146,251],[136,241],[171,233],[139,227],[93,223],[107,211],[90,199],[79,191],[43,179],[109,173],[142,167],[220,641],[32,631],[507,619],[250,617],[80,613],[135,607],[261,601],[238,599],[291,587],[483,571],[70,569],[460,563],[44,547],[122,541],[56,523],[16,509],[489,499],[214,491],[38,487],[165,479],[212,467],[142,463],[21,461],[218,457],[314,449],[222,443],[296,439],[322,433],[201,431],[170,421],[136,409],[217,401],[87,389],[206,383],[121,367],[219,349],[302,347],[2,277],[93,239],[22,593],[10,577],[150,557],[64,521],[83,503],[29,419],[4,397],[14,379],[19,359],[17,337],[116,331],[69,317],[142,313],[48,283],[34,271],[246,263],[246,257] Last fiddled with by robert44444uk on 2016-04-04 at 18:41