View Single Post
Old 2021-02-25, 22:27   #1196
sweety439
 
Nov 2016

2,819 Posts
Default Riesel base 168

Code:
1,3
168,2
335,1
502,3
669,1
836,3
1003,1
1170,14
1337,2
1504,3
1671,2
1838,4
2005,1
2172,0
2339,12
2506,1
2673,1
2840,1
3007,27
3174,3
3341,1
3508,1
3675,1
3842,2
4009,4
4176,1
4343,1781
4510,10
4677,28
With CK=4744

(Condition 1):

All k where k = m^2 and m = = 5 or 8 mod 13:
for even n let k = m^2 and let n = 2*q; factors to:
(m*168^q - 1) * (m*168^q + 1)
odd n:
factor of 13

This includes k = 25, 64, 324, 441, 961, 1156, 1936, 2209, 3249, 3600

(Condition 2):

All k where k = 42*m^2 and m = = 3 or 10 mod 13:
even n:
factor of 13
for odd n let k = 42*m^2 and let n=2*q-1; factors to:
[m*2^(2q-1)*42^q - 1] * [m*2^(2q-1)*42^q + 1]

This includes k = 378, 4200

Only list k == 1 mod 167 since other k are already in CRUS

the only remain k with k == 1 mod 167 is 2172

other remain k are {53, 495, 584, 586, 948, 1364, 1416, 1429, 1512, 1626, 1741, 1743, 1754, 1938, 2237, 2263, 2599, 2627, 2848, 2852, 3067, 3106, 3119, 3238, 3314, 3407, 3574, 3678, 3769, 3795, 3797, 3844, 4016, 4328, 4382, 4549, 4614, 4642, 4668, 4707, 4723}, see CRUS

Last fiddled with by sweety439 on 2021-02-27 at 06:56
sweety439 is offline   Reply With Quote