View Single Post
2021-01-05, 14:34   #4
Gary

"Gary"
Aug 2015
Texas

6410 Posts

Quote:
 Originally Posted by LaurV If you think about how modular exponentiation works (square and shift), then you will see why even k's are not needed. To test if some q=k*2^n+1 divides some Fm, you start with 2, and square mod q. If you get -1, then q divides F1. If not, you square again, and if -1, then q divides F2. If not, you square again, and if -1, then q divides F3. If not, you square again, and if -1, then q divides F4. If not, you square again, and if -1, then q divides F5. Now you see why even k are not relevant? Say I want to see if q=296*2^13+1 divides F11 (n has to be at least m+2 from a well known theorem). Repeating the above square+mod nine times, you get that this q divides F9 and you stop. Because two Fermat numbers can't share a factor. Exactly the same result you will get if you try to test if q=37*2^16+1 divides F14 - you will run into "q divides F9" and stop after 9 steps (this is the same q).
To elaborate a bit more, any k*2^n+1 with even k can always be represented as k'*2^n'+1 with k' odd and n' > n. For example, LaurV's 296*2^13+1 = 37*2^16+1. Most Fermat factor search programs will test a range of k for a particular value of n, then test the same range of k for n+1, etc. So testing even values of k for n is unnecessary because the corresponding k*2^n+1 will eventually be tested by you (or some other researcher) using an odd k with a larger n.