The known large primes (n>=1000) of the reverse Sierpinski/Riesel problems are: (not include k = 2, 3, 5, 7) (only for bases b<=1030)
Sierpinski:
k=1:
1*824^1024+1
k=10:
10*17^1356+1
k=12:
12*30^1023+1
12*68^656921+1
12*87^1214+1
12*102^2739+1
k=15:
15*496^44172+1
15*636^9850+1
15*752^1128+1
15*864^51510+1
k=18:
18*145^6555+1
18*157^3873+1
18*189^171175+1
k=24:
24*45^18522+1
k=30:
30*115^47376+1
30*136^?+1
30*236^2360+1
30*243^14109+1
30*315^?+1
30*336^?+1
30*386^225439+1
30*402^4637+1
30*409^3329+1
30*463^43298+1
30*577^2974+1
30*591^?+1
30*677^1744+1
30*706^2839+1
30*724^28548+1
30*774^1399+1
30*810^?+1
30*856^?+1
k=31:
31*122^1236+1
31*214^13468+1
31*308^1904+1
31*386^1010+1
31*416^23572+1
31*422^33728+1
31*438^27976+1
31*452^1516+1
31*488^30060+1
31*492^30359+1
31*518^3752+1
31*530^74898+1
31*572^15576+1
31*788^1588+1
31*904^19068+1
31*996^?+1
31*1010^2036+1
k=32:
32*26^318071+1
Riesel:
k=12:
12*65^1193-1
12*98^3599-1
k=15:
15*774^1937-1
15*828^2308-1
k=17:
17*110^2598-1
17*724^1082-1
17*842^35640-1
17*988^1275-1
k=18:
18*72^1494-1
k=24:
24*45^153355-1
24*64^3020-1
24*72^2648-1
k=25:
25*30^34205-1
k=30:
30*23^1000-1
30*172^?-1
30*235^56835-1
30*298^10338-1
30*480^12864-1
30*520^?-1
30*542^?-1
30*550^10353-1
30*557^22290-1
30*802^?-1
30*897^?-1
k=31:
31*198^?-1
31*290^5025-1
k=32:
32*26^9812-1
Last fiddled with by sweety439 on 2017-02-13 at 13:51
|