View Single Post
Old 2004-03-05, 16:42   #1
SlashDude
 
SlashDude's Avatar
 
Aug 2002
Minneapolis, MN

3448 Posts
Default Help test 2995125705 - Find a new top 5000 prime!

It's now time to help find some primes for another 15k!

We would like to gather more information on this 15k, so we would like to continue testing it to n=1,000,000. We now have llr .txt test files ready to go to help search for k=2995125705 primes! (This part of our project is the same idea as 321 search)

How to help search for primes:
1. If you don't have LLR.exe, download llr.zip here!

2. Download one of the available test files below (Right-click link, and select "Save Target As") Save the file in the same folder as LLR.exe FYI- The files in the 290,000 to 300,000 range take about 3 days to complete on a 2.2GHz P4. Post to this thread that you have downloaded a test range.

3. Open LLR, and select the "Test" menu, then "Input Data"
In the "Input File (From NewPGEN):" box enter the file from step 2 (IE - 300to305.txt)
In the "Output file:" box, enter prime.txt
Click "OK"
(If the LLR icon doesn't turn from "Red" to "Green" repeat step 3, and it will start the 2nd time you hit "OK")

3.5 If you see a number show up in the prime.txt file, you have found a new prime that will qualify for the top 5000 prime list! If you don't have a 15k top 5000 prime list prover code, I'll help you set one up so you will receive credit for the new prime!

4. When the test is complete, please mail the lresults.txt file renamed (see below) and zipped to Kosmaj, or post the renamed txt file to this thread.
Renaming convention: if you worked on the 300to305.txt file then please rename lresults.txt into lresults300to305.txt.

If you have any questions e-mail me and I'll try to answer your question.

Results (each file 700k-1M in size):
300-400k
400-500k
500-600k complete
600-636k complete
636-700k complete
700-730k complete
730-770k complete
770-800k complete
800-825k complete
825-865k complete

The list of contributors to n=865k can be found here.
The complete list of all primes found so far will be available shortly.

Status: ("R" in the left-most column denotes ranges with result files available above)

Code:
     Range          Tested by
        1 - 890,000 - 15k/RPS    - Complete - 132 primes found 
  890,000 - 891,000 - lsoule     - Complete
  891,000 - 893,000 - Kosmaj     - Complete - prime found! n=891645
  893,000 - 895,000 - lsoule     - Complete
  895,000 - 896,000 - Kosmaj     - Complete
  896,000 - 897,000 - lsoule     - Complete
  897,000 - 898,000 - segmtfault - Complete
  898,000 - 899,000 - lsoule     - Complete
  899,000 - 900,000 - segmtfault - Complete
  900,000 - 902,000 - Kosmaj     - Complete
  902,000 - 903,000 - segmtfault - Complete
  903,000 - 904,000 - Joshua2    - Complete
  904,000 - 905,000 - segmtfault - Complete
  905,000 - 906,000 - Joshua2    - Complete
  906,000 - 907,000 - segmtfault - Complete
  907,000 - 908,000 - Kosmaj     - Complete
  908,000 - 909,000 - Joshua2    - Complete
  909,000 - 910,000 - Kosmaj     - Complete
  910,000 - 911,000 - segmtfault - Complete
  911,000 - 912,000 - Kosmaj     - Complete
  912,000 - 913,000 - segmtfault - Complete
  913,000 - 915,000 - Kosmaj     - Complete
  915,000 - 917,000 - segmtfault - Complete
  917,000 - 918,000 - Kosmaj     - Complete
  918,000 - 919,000 - segmtfault - Complete
  919,000 - 920,000 - Kosmaj     - Complete
  920,000 - 921,000 - segmtfault - Complete
  921,000 - 922,000 - Kosmaj     - Complete
  922,000 - 923,000 - segmtfault - Complete
  923,000 - 924,000 - Kosmaj     - Complete
  924,000 - 926,000 - segmtfault - Complete
  926,000 - 927,000 - Kosmaj     - Complete
  927,000 - 931,000 - segmtfault - Complete
  931,000 - 932,000 - Kosmaj     - Complete
  932,000 - 965,000 - segmtfault - Complete
  965,000-1,000,000 - segmtfault - In Progress
Available ranges
Format: "File/URL", "Number of candidates"
Sieved through 25000 bn (2.5E13)
No more files available

Approximate completion time per file with 145 k/n pairs, n=920000, 2800sec per test:
113 hrs (4 days 17 hrs) on a 3.0 GHz P-4 machine using LLR-3.6.2

Sieving stopped.

Please reserve the lowest range available. Thanks!

Last fiddled with by Kosmaj on 2007-05-08 at 01:54
SlashDude is offline   Reply With Quote