View Single Post
2021-02-07, 11:01   #8
Kebbaj

"Kebbaj Reda"
May 2018
Casablanca, Morocco

5E16 Posts

Quote:
 Originally Posted by Hugo1177 Generating Large Prime Numbers We can find bigger prime numbers with this method. https://www.researchgate.net/publica..._Prime_Numbers

2161 is the next term of your interesting sequance:
{2, 3, 5, 7, 13, 19, 31, 43, 61, 67, 107, 127, 521, 631, 1307, 1619, 2161}

The problem is the proof! /

For exemple the term : 2161 which gives a prime number p = 669520952365187012801734773019730340904793566535457142176946739102321502083823099233857142333677031001451069065917971920110393630255782323617275383
212943748551754288384925199630904669367417248891744299566974703517081390275022885309341549249834446417882777235101767661916361693393317355973961109
361740840788086806308743519390960721768560920934486478379127638410123621994632671617516986749436025270882460170612028677207126354071432082804057852
021567294421457263622220997051953206302416515543266086449620395149849240412230511874765922927106048987389425173585248222630010387862113520387585603
833357934162639402504305302892121580407987900770723163143549061197642212314715010925653640972117561263171417335716694379646482116883767036278222571
382751325272483972072844735317113952796000534401

K.caldwel will not accept it, if you do not know how to factoring p-1 or p + 1 in the helper.

factoring p-1 is difficult for this small number:
2 * 7 * 3 * 1 * 5 * 2 * 7 * 1 * 11 * 1 * 13 * 1 * 17 * 1 * 19 * 1 * 31 * 1 * 61 * 1 * 163 * 1 * 181 * 1 * 433 * 1 * 2161 ** 8641 * 1 * 151201 * 84313972619 * 1163620706029 * ...

we do not talking if it is a large number.

Last fiddled with by Kebbaj on 2021-02-07 at 11:10