View Single Post
Old 2021-08-25, 22:13   #2
charybdis's Avatar
Apr 2020

14358 Posts

You've rediscovered a very well-known phenomenon called Chebyshev's bias. Assuming some strong versions of the Riemann hypothesis, it is known that for most N, there are more primes of the form 2 mod 3 than 1 mod 3 up to N. 1 mod 3 does sometimes take the lead; this first happens at N = 608981813029. The effect relates to the fact that numbers of the form 1 mod 3 can be squares while those of the form 2 mod 3 cannot. In some sense, it's actually the numbers of *primes and prime powers* (edit: with a suitable scaling on the prime powers) that we should expect to be balanced between the two classes, but it's not easy to explain why. See here for an overview of the field.

The ratio (primes 1 mod 3)/(primes 2 mod 3) tends to 1, by de la Vallee Poussin's theorem that for any k the primes are evenly distributed among the residue classes mod k that are coprime to k.

Last fiddled with by charybdis on 2021-08-25 at 22:19
charybdis is offline   Reply With Quote