View Single Post
Old 2017-01-21, 14:51   #3
sweety439
 
sweety439's Avatar
 
Nov 2016

3·5·132 Posts
Default

The known large primes (n>=1000) of the reverse Sierpinski/Riesel problems are: (not include k = 2, 3, 5, 7) (only for bases b<=1030)

Sierpinski:

k=1:

1*824^1024+1

k=10:

10*17^1356+1

k=12:

12*30^1023+1
12*68^656921+1
12*87^1214+1
12*102^2739+1

k=15:

15*496^44172+1
15*636^9850+1
15*752^1128+1
15*864^51510+1

k=18:

18*145^6555+1
18*157^3873+1
18*189^171175+1

k=24:

24*45^18522+1

k=30:

30*115^47376+1
30*136^?+1
30*236^2360+1
30*243^14109+1
30*315^?+1
30*336^?+1
30*386^225439+1
30*402^4637+1
30*409^3329+1
30*463^43298+1
30*577^2974+1
30*591^?+1
30*677^1744+1
30*706^2839+1
30*724^28548+1
30*774^1399+1
30*810^?+1
30*856^?+1

k=31:

31*122^1236+1
31*214^13468+1
31*308^1904+1
31*386^1010+1
31*416^23572+1
31*422^33728+1
31*438^27976+1
31*452^1516+1
31*488^30060+1
31*492^30359+1
31*518^3752+1
31*530^74898+1
31*572^15576+1
31*788^1588+1
31*904^19068+1
31*996^?+1
31*1010^2036+1

k=32:

32*26^318071+1

Riesel:

k=12:

12*65^1193-1
12*98^3599-1

k=15:

15*774^1937-1
15*828^2308-1

k=17:

17*110^2598-1
17*724^1082-1
17*842^35640-1
17*988^1275-1

k=18:

18*72^1494-1

k=24:

24*45^153355-1
24*64^3020-1
24*72^2648-1

k=25:

25*30^34205-1

k=30:

30*23^1000-1
30*172^?-1
30*235^56835-1
30*298^10338-1
30*480^12864-1
30*520^?-1
30*542^?-1
30*550^10353-1
30*557^22290-1
30*802^?-1
30*897^?-1

k=31:

31*198^?-1
31*290^5025-1

k=32:

32*26^9812-1

Last fiddled with by sweety439 on 2017-02-13 at 13:51
sweety439 is offline   Reply With Quote