View Single Post
 2021-01-12, 05:25 #7 a1call     "Rashid Naimi" Oct 2015 Remote to Here/There 22·503 Posts Some more insights from the future (just kidding). So it turns out that the number of (a, b) pairs for each n is a function of number of prime factors of n. If n is prime or otherwise a power of a prime there is only one pair of positive integers (a, b) satisfying the condition: a+b=n and n | ab-1 Where valuation(n-1,2) > 1 --------------------- If n has 2 prime factors there will be 2 pairs of (a, b)'s if n has 3 prime factors there will be 4. pairs of (a, b)'s .... Furthermore the differences of multipair (a, b)'s from different pairs will have a common factor with n. so for n =65 (a, b)1 = ( 8, 57) (a, b)2 = (18, 47) and gcd(18-8,65) == gcd(47-57,65) = 5 gcd(57-18,65) == gcd(47-8,65) = 13 where 65 = 5*13 Code: \\DSZ-100-A by Rashid Naimi 1/12/2221 forstep(n=3,19^3,2,{ for(a=2,(n-1)/2, b=n-a; m=lift(Mod(a*b,n)); if(m==1, print("\n",n," >> ",factor(n)," >> ",isprime(n)); print(a,", ",b); ); ); }) Output: Code: 5 >> Mat([5, 1]) >> 1 2, 3 13 >> Mat([13, 1]) >> 1 5, 8 17 >> Mat([17, 1]) >> 1 4, 13 25 >> Mat([5, 2]) >> 0 7, 18 29 >> Mat([29, 1]) >> 1 12, 17 37 >> Mat([37, 1]) >> 1 6, 31 41 >> Mat([41, 1]) >> 1 9, 32 53 >> Mat([53, 1]) >> 1 23, 30 61 >> Mat([61, 1]) >> 1 11, 50 65 >> [5, 1; 13, 1] >> 0 8, 57 65 >> [5, 1; 13, 1] >> 0 18, 47 73 >> Mat([73, 1]) >> 1 27, 46 85 >> [5, 1; 17, 1] >> 0 13, 72 85 >> [5, 1; 17, 1] >> 0 38, 47 89 >> Mat([89, 1]) >> 1 34, 55 97 >> Mat([97, 1]) >> 1 22, 75 101 >> Mat([101, 1]) >> 1 10, 91 109 >> Mat([109, 1]) >> 1 33, 76 113 >> Mat([113, 1]) >> 1 15, 98 125 >> Mat([5, 3]) >> 0 57, 68 137 >> Mat([137, 1]) >> 1 37, 100 145 >> [5, 1; 29, 1] >> 0 12, 133 145 >> [5, 1; 29, 1] >> 0 17, 128 149 >> Mat([149, 1]) >> 1 44, 105 157 >> Mat([157, 1]) >> 1 28, 129 169 >> Mat([13, 2]) >> 0 70, 99 173 >> Mat([173, 1]) >> 1 80, 93 181 >> Mat([181, 1]) >> 1 19, 162 185 >> [5, 1; 37, 1] >> 0 43, 142 185 >> [5, 1; 37, 1] >> 0 68, 117 193 >> Mat([193, 1]) >> 1 81, 112 197 >> Mat([197, 1]) >> 1 14, 183 205 >> [5, 1; 41, 1] >> 0 32, 173 205 >> [5, 1; 41, 1] >> 0 73, 132 221 >> [13, 1; 17, 1] >> 0 21, 200 221 >> [13, 1; 17, 1] >> 0 47, 174 229 >> Mat([229, 1]) >> 1 107, 122 233 >> Mat([233, 1]) >> 1 89, 144 241 >> Mat([241, 1]) >> 1 64, 177 257 >> Mat([257, 1]) >> 1 16, 241 265 >> [5, 1; 53, 1] >> 0 23, 242 265 >> [5, 1; 53, 1] >> 0 83, 182 269 >> Mat([269, 1]) >> 1 82, 187 277 >> Mat([277, 1]) >> 1 60, 217 281 >> Mat([281, 1]) >> 1 53, 228 289 >> Mat([17, 2]) >> 0 38, 251 293 >> Mat([293, 1]) >> 1 138, 155 305 >> [5, 1; 61, 1] >> 0 72, 233 305 >> [5, 1; 61, 1] >> 0 133, 172 313 >> Mat([313, 1]) >> 1 25, 288 317 >> Mat([317, 1]) >> 1 114, 203 325 >> [5, 2; 13, 1] >> 0 18, 307 325 >> [5, 2; 13, 1] >> 0 57, 268 337 >> Mat([337, 1]) >> 1 148, 189 349 >> Mat([349, 1]) >> 1 136, 213 353 >> Mat([353, 1]) >> 1 42, 311 365 >> [5, 1; 73, 1] >> 0 27, 338 365 >> [5, 1; 73, 1] >> 0 173, 192 373 >> Mat([373, 1]) >> 1 104, 269 377 >> [13, 1; 29, 1] >> 0 70, 307 377 >> [13, 1; 29, 1] >> 0 99, 278 389 >> Mat([389, 1]) >> 1 115, 274 397 >> Mat([397, 1]) >> 1 63, 334 401 >> Mat([401, 1]) >> 1 20, 381 409 >> Mat([409, 1]) >> 1 143, 266 421 >> Mat([421, 1]) >> 1 29, 392 425 >> [5, 2; 17, 1] >> 0 132, 293 425 >> [5, 2; 17, 1] >> 0 157, 268 433 >> Mat([433, 1]) >> 1 179, 254 445 >> [5, 1; 89, 1] >> 0 123, 322 445 >> [5, 1; 89, 1] >> 0 212, 233 449 >> Mat([449, 1]) >> 1 67, 382 457 >> Mat([457, 1]) >> 1 109, 348 461 >> Mat([461, 1]) >> 1 48, 413 481 >> [13, 1; 37, 1] >> 0 31, 450 481 >> [13, 1; 37, 1] >> 0 216, 265 485 >> [5, 1; 97, 1] >> 0 22, 463 485 >> [5, 1; 97, 1] >> 0 172, 313 493 >> [17, 1; 29, 1] >> 0 157, 336 493 >> [17, 1; 29, 1] >> 0 191, 302 505 >> [5, 1; 101, 1] >> 0 192, 313 505 >> [5, 1; 101, 1] >> 0 212, 293 509 >> Mat([509, 1]) >> 1 208, 301 521 >> Mat([521, 1]) >> 1 235, 286 533 >> [13, 1; 41, 1] >> 0 73, 460 533 >> [13, 1; 41, 1] >> 0 255, 278 541 >> Mat([541, 1]) >> 1 52, 489 545 >> [5, 1; 109, 1] >> 0 33, 512 545 >> [5, 1; 109, 1] >> 0 142, 403 557 >> Mat([557, 1]) >> 1 118, 439 565 >> [5, 1; 113, 1] >> 0 98, 467 565 >> [5, 1; 113, 1] >> 0 128, 437 569 >> Mat([569, 1]) >> 1 86, 483 577 >> Mat([577, 1]) >> 1 24, 553 593 >> Mat([593, 1]) >> 1 77, 516 601 >> Mat([601, 1]) >> 1 125, 476 613 >> Mat([613, 1]) >> 1 35, 578 617 >> Mat([617, 1]) >> 1 194, 423 625 >> Mat([5, 4]) >> 0 182, 443 629 >> [17, 1; 37, 1] >> 0 191, 438 629 >> [17, 1; 37, 1] >> 0 302, 327 641 >> Mat([641, 1]) >> 1 154, 487 653 >> Mat([653, 1]) >> 1 149, 504 661 >> Mat([661, 1]) >> 1 106, 555 673 >> Mat([673, 1]) >> 1 58, 615 677 >> Mat([677, 1]) >> 1 26, 651 685 >> [5, 1; 137, 1] >> 0 37, 648 685 >> [5, 1; 137, 1] >> 0 237, 448 689 >> [13, 1; 53, 1] >> 0 83, 606 689 >> [13, 1; 53, 1] >> 0 242, 447 697 >> [17, 1; 41, 1] >> 0 132, 565 697 >> [17, 1; 41, 1] >> 0 319, 378 701 >> Mat([701, 1]) >> 1 135, 566 709 >> Mat([709, 1]) >> 1 96, 613 725 >> [5, 2; 29, 1] >> 0 157, 568 725 >> [5, 2; 29, 1] >> 0 307, 418 733 >> Mat([733, 1]) >> 1 353, 380 745 >> [5, 1; 149, 1] >> 0 193, 552 745 >> [5, 1; 149, 1] >> 0 342, 403 757 >> Mat([757, 1]) >> 1 87, 670 761 >> Mat([761, 1]) >> 1 39, 722 769 >> Mat([769, 1]) >> 1 62, 707 773 >> Mat([773, 1]) >> 1 317, 456 785 >> [5, 1; 157, 1] >> 0 28, 757 785 >> [5, 1; 157, 1] >> 0 342, 443 793 >> [13, 1; 61, 1] >> 0 255, 538 793 >> [13, 1; 61, 1] >> 0 294, 499 797 >> Mat([797, 1]) >> 1 215, 582 809 >> Mat([809, 1]) >> 1 318, 491 821 >> Mat([821, 1]) >> 1 295, 526 829 >> Mat([829, 1]) >> 1 246, 583 841 >> Mat([29, 2]) >> 0 41, 800 845 >> [5, 1; 13, 2] >> 0 268, 577 845 >> [5, 1; 13, 2] >> 0 408, 437 853 >> Mat([853, 1]) >> 1 333, 520 857 >> Mat([857, 1]) >> 1 207, 650 865 >> [5, 1; 173, 1] >> 0 93, 772 865 >> [5, 1; 173, 1] >> 0 253, 612 877 >> Mat([877, 1]) >> 1 151, 726 881 >> Mat([881, 1]) >> 1 387, 494 901 >> [17, 1; 53, 1] >> 0 30, 871 901 >> [17, 1; 53, 1] >> 0 242, 659 905 >> [5, 1; 181, 1] >> 0 162, 743 905 >> [5, 1; 181, 1] >> 0 343, 562 925 >> [5, 2; 37, 1] >> 0 43, 882 925 >> [5, 2; 37, 1] >> 0 68, 857 929 >> Mat([929, 1]) >> 1 324, 605 937 >> Mat([937, 1]) >> 1 196, 741 941 >> Mat([941, 1]) >> 1 97, 844 949 >> [13, 1; 73, 1] >> 0 265, 684 949 >> [13, 1; 73, 1] >> 0 411, 538 953 >> Mat([953, 1]) >> 1 442, 511 965 >> [5, 1; 193, 1] >> 0 112, 853 965 >> [5, 1; 193, 1] >> 0 467, 498 977 >> Mat([977, 1]) >> 1 252, 725 985 >> [5, 1; 197, 1] >> 0 183, 802 985 >> [5, 1; 197, 1] >> 0 408, 577 997 >> Mat([997, 1]) >> 1 161, 836 1009 >> Mat([1009, 1]) >> 1 469, 540 1013 >> Mat([1013, 1]) >> 1 45, 968 1021 >> Mat([1021, 1]) >> 1 374, 647 1025 >> [5, 2; 41, 1] >> 0 32, 993 1025 >> [5, 2; 41, 1] >> 0 132, 893 1033 >> Mat([1033, 1]) >> 1 355, 678 1037 >> [17, 1; 61, 1] >> 0 72, 965 1037 >> [17, 1; 61, 1] >> 0 438, 599 1049 >> Mat([1049, 1]) >> 1 426, 623 1061 >> Mat([1061, 1]) >> 1 103, 958 1069 >> Mat([1069, 1]) >> 1 249, 820 1073 >> [29, 1; 37, 1] >> 0 191, 882 1073 >> [29, 1; 37, 1] >> 0 302, 771 1093 >> Mat([1093, 1]) >> 1 530, 563 1097 >> Mat([1097, 1]) >> 1 341, 756 1105 >> [5, 1; 13, 1; 17, 1] >> 0 47, 1058 1105 >> [5, 1; 13, 1; 17, 1] >> 0 242, 863 1105 >> [5, 1; 13, 1; 17, 1] >> 0 268, 837 1105 >> [5, 1; 13, 1; 17, 1] >> 0 463, 642 1109 >> Mat([1109, 1]) >> 1 354, 755 1117 >> Mat([1117, 1]) >> 1 214, 903 1129 >> Mat([1129, 1]) >> 1 168, 961 1145 >> [5, 1; 229, 1] >> 0 107, 1038 1145 >> [5, 1; 229, 1] >> 0 122, 1023 1153 >> Mat([1153, 1]) >> 1 140, 1013 1157 >> [13, 1; 89, 1] >> 0 34, 1123 1157 >> [13, 1; 89, 1] >> 0 411, 746 1165 >> [5, 1; 233, 1] >> 0 322, 843 1165 >> [5, 1; 233, 1] >> 0 377, 788 1181 >> Mat([1181, 1]) >> 1 243, 938 1189 >> [29, 1; 41, 1] >> 0 278, 911 1189 >> [29, 1; 41, 1] >> 0 360, 829 1193 >> Mat([1193, 1]) >> 1 186, 1007 1201 >> Mat([1201, 1]) >> 1 49, 1152 1205 >> [5, 1; 241, 1] >> 0 177, 1028 1205 >> [5, 1; 241, 1] >> 0 418, 787 1213 >> Mat([1213, 1]) >> 1 495, 718 1217 >> Mat([1217, 1]) >> 1 78, 1139 1229 >> Mat([1229, 1]) >> 1 597, 632 1237 >> Mat([1237, 1]) >> 1 546, 691 1241 >> [17, 1; 73, 1] >> 0 319, 922 1241 >> [17, 1; 73, 1] >> 0 557, 684 1249 >> Mat([1249, 1]) >> 1 585, 664 1261 >> [13, 1; 97, 1] >> 0 216, 1045 1261 >> [13, 1; 97, 1] >> 0 463, 798 1277 >> Mat([1277, 1]) >> 1 113, 1164 1285 >> [5, 1; 257, 1] >> 0 273, 1012 1285 >> [5, 1; 257, 1] >> 0 498, 787 1289 >> Mat([1289, 1]) >> 1 479, 810 1297 >> Mat([1297, 1]) >> 1 36, 1261 1301 >> Mat([1301, 1]) >> 1 51, 1250 1313 >> [13, 1; 101, 1] >> 0 515, 798 1313 >> [13, 1; 101, 1] >> 0 616, 697 1321 >> Mat([1321, 1]) >> 1 257, 1064 1325 >> [5, 2; 53, 1] >> 0 182, 1143 1325 >> [5, 2; 53, 1] >> 0 507, 818 1345 >> [5, 1; 269, 1] >> 0 82, 1263 1345 >> [5, 1; 269, 1] >> 0 187, 1158 1361 >> Mat([1361, 1]) >> 1 614, 747 1369 >> Mat([37, 2]) >> 0 117, 1252 1373 >> Mat([1373, 1]) >> 1 668, 705 1381 >> Mat([1381, 1]) >> 1 366, 1015 1385 >> [5, 1; 277, 1] >> 0 217, 1168 1385 >> [5, 1; 277, 1] >> 0 337, 1048 1405 >> [5, 1; 281, 1] >> 0 53, 1352 1405 >> [5, 1; 281, 1] >> 0 228, 1177 1409 >> Mat([1409, 1]) >> 1 452, 957 1417 >> [13, 1; 109, 1] >> 0 294, 1123 1417 >> [13, 1; 109, 1] >> 0 512, 905 1429 >> Mat([1429, 1]) >> 1 620, 809 1433 >> Mat([1433, 1]) >> 1 542, 891 1445 >> [5, 1; 17, 2] >> 0 38, 1407 1445 >> [5, 1; 17, 2] >> 0 327, 1118 1453 >> Mat([1453, 1]) >> 1 497, 956 1465 >> [5, 1; 293, 1] >> 0 138, 1327 1465 >> [5, 1; 293, 1] >> 0 448, 1017 1469 >> [13, 1; 113, 1] >> 0 437, 1032 1469 >> [13, 1; 113, 1] >> 0 580, 889 1481 >> Mat([1481, 1]) >> 1 465, 1016 1489 >> Mat([1489, 1]) >> 1 225, 1264 1493 >> Mat([1493, 1]) >> 1 432, 1061 1513 >> [17, 1; 89, 1] >> 0 55, 1458 1513 >> [17, 1; 89, 1] >> 0 123, 1390 1517 >> [37, 1; 41, 1] >> 0 401, 1116 1517 >> [37, 1; 41, 1] >> 0 524, 993 1525 >> [5, 2; 61, 1] >> 0 682, 843 1525 >> [5, 2; 61, 1] >> 0 743, 782 1537 >> [29, 1; 53, 1] >> 0 394, 1143 1537 >> [29, 1; 53, 1] >> 0 447, 1090 1549 >> Mat([1549, 1]) >> 1 88, 1461 1553 >> Mat([1553, 1]) >> 1 339, 1214 1565 >> [5, 1; 313, 1] >> 0 288, 1277 1565 >> [5, 1; 313, 1] >> 0 338, 1227 1585 >> [5, 1; 317, 1] >> 0 203, 1382 1585 >> [5, 1; 317, 1] >> 0 748, 837 1597 >> Mat([1597, 1]) >> 1 610, 987 1601 >> Mat([1601, 1]) >> 1 40, 1561 1609 >> Mat([1609, 1]) >> 1 523, 1086 1613 >> Mat([1613, 1]) >> 1 127, 1486 1621 >> Mat([1621, 1]) >> 1 166, 1455 1625 >> [5, 3; 13, 1] >> 0 57, 1568 1625 >> [5, 3; 13, 1] >> 0 307, 1318 1637 >> Mat([1637, 1]) >> 1 316, 1321 1649 >> [17, 1; 97, 1] >> 0 463, 1186 1649 >> [17, 1; 97, 1] >> 0 701, 948 1657 >> Mat([1657, 1]) >> 1 783, 874 1669 >> Mat([1669, 1]) >> 1 220, 1449 1681 >> Mat([41, 2]) >> 0 378, 1303 1685 >> [5, 1; 337, 1] >> 0 148, 1537 1685 >> [5, 1; 337, 1] >> 0 822, 863 1693 >> Mat([1693, 1]) >> 1 92, 1601 1697 >> Mat([1697, 1]) >> 1 414, 1283 1709 >> Mat([1709, 1]) >> 1 390, 1319 1717 >> [17, 1; 101, 1] >> 0 293, 1424 1717 >> [17, 1; 101, 1] >> 0 616, 1101 1721 >> Mat([1721, 1]) >> 1 473, 1248 1733 >> Mat([1733, 1]) >> 1 410, 1323 1741 >> Mat([1741, 1]) >> 1 59, 1682 1745 >> [5, 1; 349, 1] >> 0 213, 1532 1745 >> [5, 1; 349, 1] >> 0 562, 1183 1753 >> Mat([1753, 1]) >> 1 713, 1040 1765 >> [5, 1; 353, 1] >> 0 42, 1723 1765 >> [5, 1; 353, 1] >> 0 748, 1017 1769 >> [29, 1; 61, 1] >> 0 133, 1636 1769 >> [29, 1; 61, 1] >> 0 621, 1148 1777 >> Mat([1777, 1]) >> 1 775, 1002 1781 >> [13, 1; 137, 1] >> 0 174, 1607 1781 >> [13, 1; 137, 1] >> 0 785, 996 1789 >> Mat([1789, 1]) >> 1 724, 1065 1801 >> Mat([1801, 1]) >> 1 824, 977 1825 >> [5, 2; 73, 1] >> 0 557, 1268 1825 >> [5, 2; 73, 1] >> 0 757, 1068 1853 >> [17, 1; 109, 1] >> 0 251, 1602 1853 >> [17, 1; 109, 1] >> 0 905, 948 1861 >> Mat([1861, 1]) >> 1 61, 1800 1865 >> [5, 1; 373, 1] >> 0 477, 1388 1865 >> [5, 1; 373, 1] >> 0 642, 1223 1873 >> Mat([1873, 1]) >> 1 737, 1136 1877 >> Mat([1877, 1]) >> 1 137, 1740 1885 >> [5, 1; 13, 1; 29, 1] >> 0 278, 1607 1885 >> [5, 1; 13, 1; 29, 1] >> 0 307, 1578 1885 >> [5, 1; 13, 1; 29, 1] >> 0 447, 1438 1885 >> [5, 1; 13, 1; 29, 1] >> 0 853, 1032 1889 >> Mat([1889, 1]) >> 1 331, 1558 1901 >> Mat([1901, 1]) >> 1 218, 1683 1913 >> Mat([1913, 1]) >> 1 712, 1201 1921 >> [17, 1; 113, 1] >> 0 98, 1823 1921 >> [17, 1; 113, 1] >> 0 693, 1228 1933 >> Mat([1933, 1]) >> 1 598, 1335 1937 >> [13, 1; 149, 1] >> 0 44, 1893 1937 >> [13, 1; 149, 1] >> 0 850, 1087 1945 >> [5, 1; 389, 1] >> 0 663, 1282 1945 >> [5, 1; 389, 1] >> 0 893, 1052 1949 >> Mat([1949, 1]) >> 1 589, 1360 1961 >> [37, 1; 53, 1] >> 0 401, 1560 1961 >> [37, 1; 53, 1] >> 0 931, 1030 1973 >> Mat([1973, 1]) >> 1 259, 1714 1985 >> [5, 1; 397, 1] >> 0 63, 1922 1985 >> [5, 1; 397, 1] >> 0 857, 1128 1993 >> Mat([1993, 1]) >> 1 834, 1159 1997 >> Mat([1997, 1]) >> 1 412, 1585 2005 >> [5, 1; 401, 1] >> 0 782, 1223 2005 >> [5, 1; 401, 1] >> 0 822, 1183 2017 >> Mat([2017, 1]) >> 1 229, 1788 2029 >> Mat([2029, 1]) >> 1 992, 1037 2041 >> [13, 1; 157, 1] >> 0 499, 1542 2041 >> [13, 1; 157, 1] >> 0 970, 1071 2045 >> [5, 1; 409, 1] >> 0 143, 1902 2045 >> [5, 1; 409, 1] >> 0 552, 1493 2053 >> Mat([2053, 1]) >> 1 244, 1809 2069 >> Mat([2069, 1]) >> 1 164, 1905 2081 >> Mat([2081, 1]) >> 1 102, 1979 2089 >> Mat([2089, 1]) >> 1 789, 1300 2105 >> [5, 1; 421, 1] >> 0 392, 1713 2105 >> [5, 1; 421, 1] >> 0 813, 1292 2113 >> Mat([2113, 1]) >> 1 65, 2048 2117 >> [29, 1; 73, 1] >> 0 46, 2071 2117 >> [29, 1; 73, 1] >> 0 684, 1433 2125 >> [5, 3; 17, 1] >> 0 557, 1568 2125 >> [5, 3; 17, 1] >> 0 693, 1432 2129 >> Mat([2129, 1]) >> 1 372, 1757 2137 >> Mat([2137, 1]) >> 1 296, 1841 2141 >> Mat([2141, 1]) >> 1 419, 1722 2153 >> Mat([2153, 1]) >> 1 232, 1921 2161 >> Mat([2161, 1]) >> 1 147, 2014 2165 >> [5, 1; 433, 1] >> 0 612, 1553 2165 >> [5, 1; 433, 1] >> 0 687, 1478 2173 >> [41, 1; 53, 1] >> 0 401, 1772 2173 >> [41, 1; 53, 1] >> 0 606, 1567 2197 >> Mat([13, 3]) >> 0 239, 1958 2213 >> Mat([2213, 1]) >> 1 1083, 1130 2221 >> Mat([2221, 1]) >> 1 790, 1431 2225 >> [5, 2; 89, 1] >> 0 568, 1657 2225 >> [5, 2; 89, 1] >> 0 657, 1568 2237 >> Mat([2237, 1]) >> 1 1021, 1216 2245 >> [5, 1; 449, 1] >> 0 67, 2178 2245 >> [5, 1; 449, 1] >> 0 382, 1863 2249 >> [13, 1; 173, 1] >> 0 772, 1477 2249 >> [13, 1; 173, 1] >> 0 785, 1464 2257 >> [37, 1; 61, 1] >> 0 438, 1819 2257 >> [37, 1; 61, 1] >> 0 660, 1597 2269 >> Mat([2269, 1]) >> 1 982, 1287 2273 >> Mat([2273, 1]) >> 1 290, 1983 2281 >> Mat([2281, 1]) >> 1 710, 1571 2285 >> [5, 1; 457, 1] >> 0 348, 1937 2285 >> [5, 1; 457, 1] >> 0 1023, 1262 2293 >> Mat([2293, 1]) >> 1 600, 1693 2297 >> Mat([2297, 1]) >> 1 365, 1932 2305 >> [5, 1; 461, 1] >> 0 48, 2257 2305 >> [5, 1; 461, 1] >> 0 413, 1892 2309 >> Mat([2309, 1]) >> 1 688, 1621 2329 >> [17, 1; 137, 1] >> 0 174, 2155 2329 >> [17, 1; 137, 1] >> 0 922, 1407 2333 >> Mat([2333, 1]) >> 1 108, 2225 2341 >> Mat([2341, 1]) >> 1 153, 2188 2353 >> [13, 1; 181, 1] >> 0 200, 2153 2353 >> [13, 1; 181, 1] >> 0 343, 2010 2357 >> Mat([2357, 1]) >> 1 633, 1724 2377 >> Mat([2377, 1]) >> 1 1134, 1243 2381 >> Mat([2381, 1]) >> 1 69, 2312 2389 >> Mat([2389, 1]) >> 1 285, 2104 2393 >> Mat([2393, 1]) >> 1 971, 1422 2405 >> [5, 1; 13, 1; 37, 1] >> 0 512, 1893 2405 >> [5, 1; 13, 1; 37, 1] >> 0 697, 1708 2405 >> [5, 1; 13, 1; 37, 1] >> 0 993, 1412 2405 >> [5, 1; 13, 1; 37, 1] >> 0 1178, 1227 2417 >> Mat([2417, 1]) >> 1 592, 1825 2425 >> [5, 2; 97, 1] >> 0 507, 1918 2425 >> [5, 2; 97, 1] >> 0 657, 1768 2437 >> Mat([2437, 1]) >> 1 398, 2039 2441 >> Mat([2441, 1]) >> 1 672, 1769 2465 >> [5, 1; 17, 1; 29, 1] >> 0 157, 2308 2465 >> [5, 1; 17, 1; 29, 1] >> 0 302, 2163 2465 >> [5, 1; 17, 1; 29, 1] >> 0 1143, 1322 2465 >> [5, 1; 17, 1; 29, 1] >> 0 1177, 1288 2473 >> Mat([2473, 1]) >> 1 567, 1906 2477 >> Mat([2477, 1]) >> 1 915, 1562 2501 >> [41, 1; 61, 1] >> 0 50, 2451 2501 >> [41, 1; 61, 1] >> 0 255, 2246 2509 >> [13, 1; 193, 1] >> 0 112, 2397 2509 >> [13, 1; 193, 1] >> 0 853, 1656 2521 >> Mat([2521, 1]) >> 1 71, 2450 2525 >> [5, 2; 101, 1] >> 0 293, 2232 2525 >> [5, 2; 101, 1] >> 0 818, 1707 2533 >> [17, 1; 149, 1] >> 0 701, 1832 2533 >> [17, 1; 149, 1] >> 0 999, 1534 2545 >> [5, 1; 509, 1] >> 0 208, 2337 2545 >> [5, 1; 509, 1] >> 0 717, 1828 2549 >> Mat([2549, 1]) >> 1 357, 2192 2557 >> Mat([2557, 1]) >> 1 611, 1946 2561 >> [13, 1; 197, 1] >> 0 408, 2153 2561 >> [13, 1; 197, 1] >> 0 577, 1984 2581 >> [29, 1; 89, 1] >> 0 568, 2013 2581 >> [29, 1; 89, 1] >> 0 945, 1636 2593 >> Mat([2593, 1]) >> 1 918, 1675 2605 >> [5, 1; 521, 1] >> 0 807, 1798 2605 >> [5, 1; 521, 1] >> 0 1277, 1328 2609 >> Mat([2609, 1]) >> 1 389, 2220 2617 >> Mat([2617, 1]) >> 1 667, 1950 2621 >> Mat([2621, 1]) >> 1 472, 2149 2633 >> Mat([2633, 1]) >> 1 1224, 1409 2657 >> Mat([2657, 1]) >> 1 163, 2494 2665 >> [5, 1; 13, 1; 41, 1] >> 0 73, 2592 2665 >> [5, 1; 13, 1; 41, 1] >> 0 278, 2387 2665 >> [5, 1; 13, 1; 41, 1] >> 0 788, 1877 2665 >> [5, 1; 13, 1; 41, 1] >> 0 993, 1672 2669 >> [17, 1; 157, 1] >> 0 914, 1755 2669 >> [17, 1; 157, 1] >> 0 1228, 1441 2677 >> Mat([2677, 1]) >> 1 550, 2127 2689 >> Mat([2689, 1]) >> 1 1142, 1547 2693 >> Mat([2693, 1]) >> 1 859, 1834 2701 >> [37, 1; 73, 1] >> 0 265, 2436 2701 >> [37, 1; 73, 1] >> 0 1141, 1560 2705 >> [5, 1; 541, 1] >> 0 52, 2653 2705 >> [5, 1; 541, 1] >> 0 593, 2112 2713 >> Mat([2713, 1]) >> 1 887, 1826 2725 >> [5, 2; 109, 1] >> 0 1057, 1668 2725 >> [5, 2; 109, 1] >> 0 1232, 1493 2729 >> Mat([2729, 1]) >> 1 1102, 1627 2741 >> Mat([2741, 1]) >> 1 656, 2085 2749 >> Mat([2749, 1]) >> 1 640, 2109 2753 >> Mat([2753, 1]) >> 1 794, 1959 2777 >> Mat([2777, 1]) >> 1 190, 2587 2785 >> [5, 1; 557, 1] >> 0 118, 2667 2785 >> [5, 1; 557, 1] >> 0 1232, 1553 2789 >> Mat([2789, 1]) >> 1 167, 2622 2797 >> Mat([2797, 1]) >> 1 603, 2194 2801 >> Mat([2801, 1]) >> 1 1258, 1543 2809 >> Mat([53, 2]) >> 0 500, 2309 2813 >> [29, 1; 97, 1] >> 0 75, 2738 2813 >> [29, 1; 97, 1] >> 0 1380, 1433 2825 >> [5, 2; 113, 1] >> 0 693, 2132 2825 >> [5, 2; 113, 1] >> 0 1032, 1793 2833 >> Mat([2833, 1]) >> 1 1357, 1476 2837 >> Mat([2837, 1]) >> 1 416, 2421 2845 >> [5, 1; 569, 1] >> 0 483, 2362 2845 >> [5, 1; 569, 1] >> 0 1052, 1793 2857 >> Mat([2857, 1]) >> 1 896, 1961 2861 >> Mat([2861, 1]) >> 1 1202, 1659 2873 >> [13, 2; 17, 1] >> 0 268, 2605 2873 >> [13, 2; 17, 1] >> 0 1084, 1789 2885 >> [5, 1; 577, 1] >> 0 553, 2332 2885 >> [5, 1; 577, 1] >> 0 1178, 1707 2897 >> Mat([2897, 1]) >> 1 1120, 1777 2909 >> Mat([2909, 1]) >> 1 878, 2031 2917 >> Mat([2917, 1]) >> 1 54, 2863 2929 >> [29, 1; 101, 1] >> 0 394, 2535 2929 >> [29, 1; 101, 1] >> 0 1404, 1525 2941 >> [17, 1; 173, 1] >> 0 599, 2342 2941 >> [17, 1; 173, 1] >> 0 1118, 1823 2953 >> Mat([2953, 1]) >> 1 1226, 1727 2957 >> Mat([2957, 1]) >> 1 1222, 1735 2965 >> [5, 1; 593, 1] >> 0 77, 2888 2965 >> [5, 1; 593, 1] >> 0 1263, 1702 2969 >> Mat([2969, 1]) >> 1 964, 2005 2977 >> [13, 1; 229, 1] >> 0 122, 2855 2977 >> [13, 1; 229, 1] >> 0 580, 2397 2993 >> [41, 1; 73, 1] >> 0 173, 2820 2993 >> [41, 1; 73, 1] >> 0 319, 2674 3001 >> Mat([3001, 1]) >> 1 1353, 1648 3005 >> [5, 1; 601, 1] >> 0 1077, 1928 3005 >> [5, 1; 601, 1] >> 0 1327, 1678 3029 >> [13, 1; 233, 1] >> 0 788, 2241 3029 >> [13, 1; 233, 1] >> 0 1487, 1542 3037 >> Mat([3037, 1]) >> 1 281, 2756 3041 >> Mat([3041, 1]) >> 1 774, 2267 3049 >> Mat([3049, 1]) >> 1 475, 2574 3061 >> Mat([3061, 1]) >> 1 501, 2560 3065 >> [5, 1; 613, 1] >> 0 578, 2487 3065 >> [5, 1; 613, 1] >> 0 648, 2417 3077 >> [17, 1; 181, 1] >> 0 200, 2877 3077 >> [17, 1; 181, 1] >> 0 1067, 2010 3085 >> [5, 1; 617, 1] >> 0 423, 2662 3085 >> [5, 1; 617, 1] >> 0 1428, 1657 3089 >> Mat([3089, 1]) >> 1 393, 2696 3109 >> Mat([3109, 1]) >> 1 727, 2382 3121 >> Mat([3121, 1]) >> 1 79, 3042 3125 >> Mat([5, 5]) >> 0 1068, 2057 3133 >> [13, 1; 241, 1] >> 0 177, 2956 3133 >> [13, 1; 241, 1] >> 0 1269, 1864 3137 >> Mat([3137, 1]) >> 1 56, 3081 3145 >> [5, 1; 17, 1; 37, 1] >> 0 302, 2843 3145 >> [5, 1; 17, 1; 37, 1] >> 0 327, 2818 3145 >> [5, 1; 17, 1; 37, 1] >> 0 438, 2707 3145 >> [5, 1; 17, 1; 37, 1] >> 0 1067, 2078 3161 >> [29, 1; 109, 1] >> 0 360, 2801 3161 >> [29, 1; 109, 1] >> 0 621, 2540 3169 >> Mat([3169, 1]) >> 1 1325, 1844 3181 >> Mat([3181, 1]) >> 1 282, 2899 3205 >> [5, 1; 641, 1] >> 0 487, 2718 3205 >> [5, 1; 641, 1] >> 0 1128, 2077 3209 >> Mat([3209, 1]) >> 1 484, 2725 3217 >> Mat([3217, 1]) >> 1 1436, 1781 3221 >> Mat([3221, 1]) >> 1 234, 2987 3229 >> Mat([3229, 1]) >> 1 839, 2390 3233 >> [53, 1; 61, 1] >> 0 560, 2673 3233 >> [53, 1; 61, 1] >> 0 1514, 1719 3253 >> Mat([3253, 1]) >> 1 1598, 1655 3257 >> Mat([3257, 1]) >> 1 291, 2966 3265 >> [5, 1; 653, 1] >> 0 802, 2463 3265 >> [5, 1; 653, 1] >> 0 1157, 2108 3277 >> [29, 1; 113, 1] >> 0 128, 3149 3277 >> [29, 1; 113, 1] >> 0 1032, 2245 3281 >> [17, 1; 193, 1] >> 0 81, 3200 3281 >> [17, 1; 193, 1] >> 0 1432, 1849 3293 >> [37, 1; 89, 1] >> 0 746, 2547 3293 >> [37, 1; 89, 1] >> 0 1301, 1992 3301 >> Mat([3301, 1]) >> 1 1212, 2089 3305 >> [5, 1; 661, 1] >> 0 767, 2538 3305 >> [5, 1; 661, 1] >> 0 1428, 1877 3313 >> Mat([3313, 1]) >> 1 407, 2906 3329 >> Mat([3329, 1]) >> 1 1600, 1729 3341 >> [13, 1; 257, 1] >> 0 1269, 2072 3341 >> [13, 1; 257, 1] >> 0 1526, 1815 3349 >> [17, 1; 197, 1] >> 0 183, 3166 3349 >> [17, 1; 197, 1] >> 0 999, 2350 3361 >> Mat([3361, 1]) >> 1 900, 2461 3365 >> [5, 1; 673, 1] >> 0 58, 3307 3365 >> [5, 1; 673, 1] >> 0 1288, 2077 3373 >> Mat([3373, 1]) >> 1 1105, 2268 3385 >> [5, 1; 677, 1] >> 0 703, 2682 3385 >> [5, 1; 677, 1] >> 0 1328, 2057 3389 >> Mat([3389, 1]) >> 1 1344, 2045 3413 >> Mat([3413, 1]) >> 1 1471, 1942 3425 >> [5, 2; 137, 1] >> 0 1407, 2018 3425 >> [5, 2; 137, 1] >> 0 1607, 1818 3433 >> Mat([3433, 1]) >> 1 1651, 1782 3445 >> [5, 1; 13, 1; 53, 1] >> 0 83, 3362 3445 >> [5, 1; 13, 1; 53, 1] >> 0 242, 3203 3445 >> [5, 1; 13, 1; 53, 1] >> 0 447, 2998 3445 >> [5, 1; 13, 1; 53, 1] >> 0 772, 2673 3449 >> Mat([3449, 1]) >> 1 1122, 2327 3457 >> Mat([3457, 1]) >> 1 708, 2749 3461 >> Mat([3461, 1]) >> 1 1453, 2008 3469 >> Mat([3469, 1]) >> 1 1003, 2466 3485 >> [5, 1; 17, 1; 41, 1] >> 0 132, 3353 3485 >> [5, 1; 17, 1; 41, 1] >> 0 378, 3107 3485 >> [5, 1; 17, 1; 41, 1] >> 0 1262, 2223 3485 >> [5, 1; 17, 1; 41, 1] >> 0 1713, 1772 3497 >> [13, 1; 269, 1] >> 0 187, 3310 3497 >> [13, 1; 269, 1] >> 0 889, 2608 3505 >> [5, 1; 701, 1] >> 0 1267, 2238 3505 >> [5, 1; 701, 1] >> 0 1537, 1968 3517 >> Mat([3517, 1]) >> 1 596, 2921 3529 >> Mat([3529, 1]) >> 1 808, 2721 3533 >> Mat([3533, 1]) >> 1 548, 2985 3541 >> Mat([3541, 1]) >> 1 852, 2689 3545 >> [5, 1; 709, 1] >> 0 613, 2932 3545 >> [5, 1; 709, 1] >> 0 1322, 2223 3557 >> Mat([3557, 1]) >> 1 943, 2614 3581 >> Mat([3581, 1]) >> 1 364, 3217 3589 >> [37, 1; 97, 1] >> 0 216, 3373 3589 >> [37, 1; 97, 1] >> 0 1671, 1918 3593 >> Mat([3593, 1]) >> 1 1153, 2440 3601 >> [13, 1; 277, 1] >> 0 60, 3541 3601 >> [13, 1; 277, 1] >> 0 1048, 2553 3613 >> Mat([3613, 1]) >> 1 85, 3528 3617 >> Mat([3617, 1]) >> 1 1234, 2383 3625 >> [5, 3; 29, 1] >> 0 307, 3318 3625 >> [5, 3; 29, 1] >> 0 568, 3057 3637 >> Mat([3637, 1]) >> 1 1027, 2610 3649 >> [41, 1; 89, 1] >> 0 1034, 2615 3649 >> [41, 1; 89, 1] >> 0 1280, 2369 3653 >> [13, 1; 281, 1] >> 0 1071, 2582 3653 >> [13, 1; 281, 1] >> 0 1633, 2020 3665 >> [5, 1; 733, 1] >> 0 353, 3312 3665 >> [5, 1; 733, 1] >> 0 1113, 2552 3673 >> Mat([3673, 1]) >> 1 994, 2679 3677 >> Mat([3677, 1]) >> 1 1309, 2368 3697 >> Mat([3697, 1]) >> 1 1131, 2566 3701 >> Mat([3701, 1]) >> 1 1279, 2422 3709 >> Mat([3709, 1]) >> 1 1609, 2100 3721 >> Mat([61, 2]) >> 0 682, 3039 3725 >> [5, 2; 149, 1] >> 0 193, 3532 3725 >> [5, 2; 149, 1] >> 0 1832, 1893 3733 >> Mat([3733, 1]) >> 1 851, 2882 3737 >> [37, 1; 101, 1] >> 0 697, 3040 3737 >> [37, 1; 101, 1] >> 0 919, 2818 3757 >> [13, 1; 17, 2] >> 0 616, 3141 3757 >> [13, 1; 17, 2] >> 0 905, 2852 3761 >> Mat([3761, 1]) >> 1 604, 3157 3769 >> Mat([3769, 1]) >> 1 1445, 2324 3785 >> [5, 1; 757, 1] >> 0 87, 3698 3785 >> [5, 1; 757, 1] >> 0 1427, 2358 3793 >> Mat([3793, 1]) >> 1 803, 2990 3797 >> Mat([3797, 1]) >> 1 742, 3055 3805 >> [5, 1; 761, 1] >> 0 722, 3083 3805 >> [5, 1; 761, 1] >> 0 1483, 2322 3809 >> [13, 1; 293, 1] >> 0 138, 3671 3809 >> [13, 1; 293, 1] >> 0 1620, 2189 3821 >> Mat([3821, 1]) >> 1 376, 3445 3833 >> Mat([3833, 1]) >> 1 361, 3472 3845 >> [5, 1; 769, 1] >> 0 62, 3783 3845 >> [5, 1; 769, 1] >> 0 707, 3138 3853 >> Mat([3853, 1]) >> 1 1305, 2548 3865 >> [5, 1; 773, 1] >> 0 317, 3548 3865 >> [5, 1; 773, 1] >> 0 1863, 2002 3869 >> [53, 1; 73, 1] >> 0 1560, 2309 3869 >> [53, 1; 73, 1] >> 0 1779, 2090 3877 >> Mat([3877, 1]) >> 1 502, 3375 3881 >> Mat([3881, 1]) >> 1 197, 3684 3889 >> Mat([3889, 1]) >> 1 454, 3435 3893 >> [17, 1; 229, 1] >> 0 336, 3557 3893 >> [17, 1; 229, 1] >> 0 565, 3328 3917 >> Mat([3917, 1]) >> 1 835, 3082 3925 >> [5, 2; 157, 1] >> 0 443, 3482 3925 >> [5, 2; 157, 1] >> 0 757, 3168 3929 >> Mat([3929, 1]) >> 1 226, 3703 3961 >> [17, 1; 233, 1] >> 0 89, 3872 3961 >> [17, 1; 233, 1] >> 0 1254, 2707 3965 >> [5, 1; 13, 1; 61, 1] >> 0 538, 3427 3965 >> [5, 1; 13, 1; 61, 1] >> 0 1048, 2917 3965 >> [5, 1; 13, 1; 61, 1] >> 0 1087, 2878 3965 >> [5, 1; 13, 1; 61, 1] >> 0 1292, 2673 3973 >> [29, 1; 137, 1] >> 0 1607, 2366 3973 >> [29, 1; 137, 1] >> 0 1955, 2018 3977 >> [41, 1; 97, 1] >> 0 1239, 2738 3977 >> [41, 1; 97, 1] >> 0 1918, 2059 3985 >> [5, 1; 797, 1] >> 0 582, 3403 3985 >> [5, 1; 797, 1] >> 0 1012, 2973 3989 >> Mat([3989, 1]) >> 1 481, 3508 4001 >> Mat([4001, 1]) >> 1 899, 3102 4013 >> Mat([4013, 1]) >> 1 1230, 2783 4021 >> Mat([4021, 1]) >> 1 723, 3298 4033 >> [37, 1; 109, 1] >> 0 142, 3891 4033 >> [37, 1; 109, 1] >> 0 512, 3521 4045 >> [5, 1; 809, 1] >> 0 318, 3727 4045 >> [5, 1; 809, 1] >> 0 1127, 2918 4049 >> Mat([4049, 1]) >> 1 884, 3165 4057 >> Mat([4057, 1]) >> 1 1857, 2200 4069 >> [13, 1; 313, 1] >> 0 1227, 2842 4069 >> [13, 1; 313, 1] >> 0 1903, 2166 4073 >> Mat([4073, 1]) >> 1 549, 3524 4093 >> Mat([4093, 1]) >> 1 1059, 3034 4097 >> [17, 1; 241, 1] >> 0 64, 4033 4097 >> [17, 1; 241, 1] >> 0 659, 3438 4105 >> [5, 1; 821, 1] >> 0 1347, 2758 4105 >> [5, 1; 821, 1] >> 0 1937, 2168 4121 >> [13, 1; 317, 1] >> 0 203, 3918 4121 >> [13, 1; 317, 1] >> 0 837, 3284 4129 >> Mat([4129, 1]) >> 1 895, 3234 4133 >> Mat([4133, 1]) >> 1 733, 3400 4141 >> [41, 1; 101, 1] >> 0 91, 4050 4141 >> [41, 1; 101, 1] >> 0 1303, 2838 4145 >> [5, 1; 829, 1] >> 0 583, 3562 4145 >> [5, 1; 829, 1] >> 0 1412, 2733 4153 >> Mat([4153, 1]) >> 1 1643, 2510 4157 >> Mat([4157, 1]) >> 1 1761, 2396 4177 >> Mat([4177, 1]) >> 1 457, 3720 4181 >> [37, 1; 113, 1] >> 0 919, 3262 4181 >> [37, 1; 113, 1] >> 0 1597, 2584 4201 >> Mat([4201, 1]) >> 1 1154, 3047 4205 >> [5, 1; 29, 2] >> 0 882, 3323 4205 >> [5, 1; 29, 2] >> 0 1723, 2482 4217 >> Mat([4217, 1]) >> 1 1911, 2306 4225 >> [5, 2; 13, 2] >> 0 268, 3957 4225 >> [5, 2; 13, 2] >> 0 1282, 2943 4229 >> Mat([4229, 1]) >> 1 2082, 2147 4241 >> Mat([4241, 1]) >> 1 1044, 3197 4253 >> Mat([4253, 1]) >> 1 561, 3692 4261 >> Mat([4261, 1]) >> 1 721, 3540 4265 >> [5, 1; 853, 1] >> 0 333, 3932 4265 >> [5, 1; 853, 1] >> 0 1373, 2892 4273 >> Mat([4273, 1]) >> 1 1200, 3073 4285 >> [5, 1; 857, 1] >> 0 207, 4078 4285 >> [5, 1; 857, 1] >> 0 1507, 2778 4289 >> Mat([4289, 1]) >> 1 528, 3761 4297 >> Mat([4297, 1]) >> 1 1972, 2325 4321 >> [29, 1; 149, 1] >> 0 1148, 3173 4321 >> [29, 1; 149, 1] >> 0 2042, 2279 4325 >> [5, 2; 173, 1] >> 0 93, 4232 4325 >> [5, 2; 173, 1] >> 0 1118, 3207 4337 >> Mat([4337, 1]) >> 1 886, 3451 4349 >> Mat([4349, 1]) >> 1 608, 3741 4357 >> Mat([4357, 1]) >> 1 66, 4291 4369 >> [17, 1; 257, 1] >> 0 1526, 2843 4369 >> [17, 1; 257, 1] >> 0 1815, 2554 4373 >> Mat([4373, 1]) >> 1 1904, 2469 4381 >> [13, 1; 337, 1] >> 0 148, 4233 4381 >> [13, 1; 337, 1] >> 0 863, 3518 4385 >> [5, 1; 877, 1] >> 0 1028, 3357 4385 >> [5, 1; 877, 1] >> 0 1603, 2782 4397 >> Mat([4397, 1]) >> 1 505, 3892 4405 >> [5, 1; 881, 1] >> 0 387, 4018 4405 >> [5, 1; 881, 1] >> 0 1268, 3137 4409 >> Mat([4409, 1]) >> 1 332, 4077 4421 >> Mat([4421, 1]) >> 1 952, 3469 4441 >> Mat([4441, 1]) >> 1 2146, 2295 4453 >> [61, 1; 73, 1] >> 0 538, 3915 4453 >> [61, 1; 73, 1] >> 0 1414, 3039 4457 >> Mat([4457, 1]) >> 1 1880, 2577 4469 >> [41, 1; 109, 1] >> 0 360, 4109 4469 >> [41, 1; 109, 1] >> 0 1057, 3412 4481 >> Mat([4481, 1]) >> 1 276, 4205 4493 >> Mat([4493, 1]) >> 1 2213, 2280 4505 >> [5, 1; 17, 1; 53, 1] >> 0 242, 4263 4505 >> [5, 1; 17, 1; 53, 1] >> 0 1143, 3362 4505 >> [5, 1; 17, 1; 53, 1] >> 0 1772, 2733 4505 >> [5, 1; 17, 1; 53, 1] >> 0 1832, 2673 4513 >> Mat([4513, 1]) >> 1 95, 4418 4517 >> Mat([4517, 1]) >> 1 1474, 3043 4525 >> [5, 2; 181, 1] >> 0 343, 4182 4525 >> [5, 2; 181, 1] >> 0 743, 3782 4537 >> [13, 1; 349, 1] >> 0 213, 4324 4537 >> [13, 1; 349, 1] >> 0 1958, 2579 4549 >> Mat([4549, 1]) >> 1 1260, 3289 4553 >> [29, 1; 157, 1] >> 0 1699, 2854 4553 >> [29, 1; 157, 1] >> 0 2013, 2540 4561 >> Mat([4561, 1]) >> 1 2205, 2356 4573 >> [17, 1; 269, 1] >> 0 1696, 2877 4573 >> [17, 1; 269, 1] >> 0 2070, 2503 4589 >> [13, 1; 353, 1] >> 0 395, 4194 4589 >> [13, 1; 353, 1] >> 0 1370, 3219 4597 >> Mat([4597, 1]) >> 1 2129, 2468 4621 >> Mat([4621, 1]) >> 1 152, 4469 4625 >> [5, 3; 37, 1] >> 0 68, 4557 4625 >> [5, 3; 37, 1] >> 0 1807, 2818 4633 >> [41, 1; 113, 1] >> 0 1567, 3066 4633 >> [41, 1; 113, 1] >> 0 1936, 2697 4637 >> Mat([4637, 1]) >> 1 2044, 2593 4645 >> [5, 1; 929, 1] >> 0 1253, 3392 4645 >> [5, 1; 929, 1] >> 0 2182, 2463 4649 >> Mat([4649, 1]) >> 1 1846, 2803 4657 >> Mat([4657, 1]) >> 1 1912, 2745 4673 >> Mat([4673, 1]) >> 1 1993, 2680 4685 >> [5, 1; 937, 1] >> 0 1133, 3552 4685 >> [5, 1; 937, 1] >> 0 1678, 3007 4705 >> [5, 1; 941, 1] >> 0 97, 4608 4705 >> [5, 1; 941, 1] >> 0 1038, 3667 4709 >> [17, 1; 277, 1] >> 0 217, 4492 4709 >> [17, 1; 277, 1] >> 0 1602, 3107 4717 >> [53, 1; 89, 1] >> 0 500, 4217 4717 >> [53, 1; 89, 1] >> 0 924, 3793 4721 >> Mat([4721, 1]) >> 1 1697, 3024 4729 >> Mat([4729, 1]) >> 1 1365, 3364 4733 >> Mat([4733, 1]) >> 1 897, 3836 4745 >> [5, 1; 13, 1; 73, 1] >> 0 538, 4207 4745 >> [5, 1; 13, 1; 73, 1] >> 0 1487, 3258 4745 >> [5, 1; 13, 1; 73, 1] >> 0 1633, 3112 4745 >> [5, 1; 13, 1; 73, 1] >> 0 2163, 2582 4765 >> [5, 1; 953, 1] >> 0 442, 4323 4765 >> [5, 1; 953, 1] >> 0 2348, 2417 4777 >> [17, 1; 281, 1] >> 0 1177, 3600 4777 >> [17, 1; 281, 1] >> 0 1458, 3319 4789 >> Mat([4789, 1]) >> 1 1481, 3308 4793 >> Mat([4793, 1]) >> 1 1480, 3313 4801 >> Mat([4801, 1]) >> 1 1403, 3398 4813 >> Mat([4813, 1]) >> 1 1868, 2945 4817 >> Mat([4817, 1]) >> 1 1291, 3526 4825 >> [5, 2; 193, 1] >> 0 1432, 3393 4825 >> [5, 2; 193, 1] >> 0 1818, 3007 4849 >> [13, 1; 373, 1] >> 0 642, 4207 4849 >> [13, 1; 373, 1] >> 0 850, 3999 4861 >> Mat([4861, 1]) >> 1 493, 4368 4877 >> Mat([4877, 1]) >> 1 719, 4158 4885 >> [5, 1; 977, 1] >> 0 252, 4633 4885 >> [5, 1; 977, 1] >> 0 1702, 3183 4889 >> Mat([4889, 1]) >> 1 730, 4159 4901 >> [13, 2; 29, 1] >> 0 70, 4831 4901 >> [13, 2; 29, 1] >> 0 99, 4802 4909 >> Mat([4909, 1]) >> 1 1613, 3296 4913 >> Mat([17, 3]) >> 0 1985, 2928 4925 >> [5, 2; 197, 1] >> 0 1168, 3757 4925 >> [5, 2; 197, 1] >> 0 1393, 3532 4933 >> Mat([4933, 1]) >> 1 1194, 3739 4937 >> Mat([4937, 1]) >> 1 849, 4088 4957 >> Mat([4957, 1]) >> 1 359, 4598 4969 >> Mat([4969, 1]) >> 1 1076, 3893 4973 >> Mat([4973, 1]) >> 1 223, 4750 4981 >> [17, 1; 293, 1] >> 0 2189, 2792 4981 >> [17, 1; 293, 1] >> 0 2206, 2775 4985 >> [5, 1; 997, 1] >> 0 1158, 3827 4985 >> [5, 1; 997, 1] >> 0 1833, 3152 4993 >> Mat([4993, 1]) >> 1 158, 4835 5009 >> Mat([5009, 1]) >> 1 539, 4470 5017 >> [29, 1; 173, 1] >> 0 945, 4072 5017 >> [29, 1; 173, 1] >> 0 1810, 3207 5021 >> Mat([5021, 1]) >> 1 1363, 3658 5045 >> [5, 1; 1009, 1] >> 0 1478, 3567 5045 >> [5, 1; 1009, 1] >> 0 2487, 2558 5057 >> [13, 1; 389, 1] >> 0 1282, 3775 5057 >> [13, 1; 389, 1] >> 0 2449, 2608 5065 >> [5, 1; 1013, 1] >> 0 968, 4097 5065 >> [5, 1; 1013, 1] >> 0 1058, 4007 5069 >> [37, 1; 137, 1] >> 0 1881, 3188 5069 >> [37, 1; 137, 1] >> 0 1955, 3114 5077 >> Mat([5077, 1]) >> 1 858, 4219 5081 >> Mat([5081, 1]) >> 1 2412, 2669 5101 >> Mat([5101, 1]) >> 1 101, 5000 5105 >> [5, 1; 1021, 1] >> 0 647, 4458 5105 >> [5, 1; 1021, 1] >> 0 1668, 3437 5113 >> Mat([5113, 1]) >> 1 2025, 3088 5125 >> [5, 3; 41, 1] >> 0 1057, 4068 5125 >> [5, 3; 41, 1] >> 0 2182, 2943 5141 >> [53, 1; 97, 1] >> 0 507, 4634 5141 >> [53, 1; 97, 1] >> 0 560, 4581 5153 >> Mat([5153, 1]) >> 1 227, 4926 5161 >> [13, 1; 397, 1] >> 0 460, 4701 5161 >> [13, 1; 397, 1] >> 0 2319, 2842 5165 >> [5, 1; 1033, 1] >> 0 678, 4487 5165 >> [5, 1; 1033, 1] >> 0 1388, 3777 5185 >> [5, 1; 17, 1; 61, 1] >> 0 72, 5113 5185 >> [5, 1; 17, 1; 61, 1] >> 0 438, 4747 5185 >> [5, 1; 17, 1; 61, 1] >> 0 2002, 3183 5185 >> [5, 1; 17, 1; 61, 1] >> 0 2512, 2673 5189 >> Mat([5189, 1]) >> 1 2446, 2743 5197 >> Mat([5197, 1]) >> 1 1969, 3228 5209 >> Mat([5209, 1]) >> 1 2098, 3111 5213 >> [13, 1; 401, 1] >> 0 421, 4792 5213 >> [13, 1; 401, 1] >> 0 2426, 2787 5233 >> Mat([5233, 1]) >> 1 2253, 2980 5237 >> Mat([5237, 1]) >> 1 369, 4868 5245 >> [5, 1; 1049, 1] >> 0 623, 4622 5245 >> [5, 1; 1049, 1] >> 0 1672, 3573 5249 >> [29, 1; 181, 1] >> 0 162, 5087 5249 >> [29, 1; 181, 1] >> 0 1467, 3782 5261 >> Mat([5261, 1]) >> 1 827, 4434 5273 >> Mat([5273, 1]) >> 1 944, 4329 5281 >> Mat([5281, 1]) >> 1 1673, 3608 5297 >> Mat([5297, 1]) >> 1 2313, 2984 5305 >> [5, 1; 1061, 1] >> 0 103, 5202 5305 >> [5, 1; 1061, 1] >> 0 958, 4347 5309 >> Mat([5309, 1]) >> 1 1804, 3505 5317 >> [13, 1; 409, 1] >> 0 1084, 4233 5317 >> [13, 1; 409, 1] >> 0 1370, 3947 5321 >> [17, 1; 313, 1] >> 0 914, 4407 5321 >> [17, 1; 313, 1] >> 0 2529, 2792 5329 >> Mat([73, 2]) >> 0 776, 4553 5333 >> Mat([5333, 1]) >> 1 2630, 2703 5345 >> [5, 1; 1069, 1] >> 0 1318, 4027 5345 >> [5, 1; 1069, 1] >> 0 2387, 2958 5353 >> [53, 1; 101, 1] >> 0 394, 4959 5353 >> [53, 1; 101, 1] >> 0 818, 4535 5365 >> [5, 1; 29, 1; 37, 1] >> 0 302, 5063 5365 >> [5, 1; 29, 1; 37, 1] >> 0 882, 4483 5365 >> [5, 1; 29, 1; 37, 1] >> 0 2337, 3028 5365 >> [5, 1; 29, 1; 37, 1] >> 0 2448, 2917 5381 >> Mat([5381, 1]) >> 1 1739, 3642 5389 >> [17, 1; 317, 1] >> 0 837, 4552 5389 >> [17, 1; 317, 1] >> 0 2333, 3056 5393 >> Mat([5393, 1]) >> 1 665, 4728 5413 >> Mat([5413, 1]) >> 1 429, 4984 5417 >> Mat([5417, 1]) >> 1 368, 5049 5429 >> [61, 1; 89, 1] >> 0 233, 5196 5429 >> [61, 1; 89, 1] >> 0 1636, 3793 5437 >> Mat([5437, 1]) >> 1 630, 4807 5441 >> Mat([5441, 1]) >> 1 2452, 2989 5449 >> Mat([5449, 1]) >> 1 635, 4814 5465 >> [5, 1; 1093, 1] >> 0 563, 4902 5465 >> [5, 1; 1093, 1] >> 0 1623, 3842 5473 >> [13, 1; 421, 1] >> 0 450, 5023 5473 >> [13, 1; 421, 1] >> 0 1292, 4181 5477 >> Mat([5477, 1]) >> 1 74, 5403 5485 >> [5, 1; 1097, 1] >> 0 1438, 4047 5485 >> [5, 1; 1097, 1] >> 0 1853, 3632 5501 >> Mat([5501, 1]) >> 1 1115, 4386 5513 >> [37, 1; 149, 1] >> 0 105, 5408 5513 >> [37, 1; 149, 1] >> 0 1893, 3620 5521 >> Mat([5521, 1]) >> 1 765, 4756 5525 >> [5, 2; 13, 1; 17, 1] >> 0 268, 5257 5525 >> [5, 2; 13, 1; 17, 1] >> 0 1568, 3957 5525 >> [5, 2; 13, 1; 17, 1] >> 0 1968, 3557 5525 >> [5, 2; 13, 1; 17, 1] >> 0 2257, 3268 5545 >> [5, 1; 1109, 1] >> 0 1463, 4082 5545 >> [5, 1; 1109, 1] >> 0 2572, 2973 5557 >> Mat([5557, 1]) >> 1 2478, 3079 5569 >> Mat([5569, 1]) >> 1 973, 4596 5573 >> Mat([5573, 1]) >> 1 2017, 3556 5581 >> Mat([5581, 1]) >> 1 1437, 4144 5585 >> [5, 1; 1117, 1] >> 0 903, 4682 5585 >> [5, 1; 1117, 1] >> 0 2448, 3137 5597 >> [29, 1; 193, 1] >> 0 853, 4744 5597 >> [29, 1; 193, 1] >> 0 2042, 3555 5617 >> [41, 1; 137, 1] >> 0 237, 5380 5617 >> [41, 1; 137, 1] >> 0 2018, 3599 5629 >> [13, 1; 433, 1] >> 0 1045, 4584 5629 >> [13, 1; 433, 1] >> 0 2777, 2852 5641 >> Mat([5641, 1]) >> 1 1429, 4212 5645 >> [5, 1; 1129, 1] >> 0 168, 5477 5645 >> [5, 1; 1129, 1] >> 0 1297, 4348 5653 >> Mat([5653, 1]) >> 1 310, 5343 5657 >> Mat([5657, 1]) >> 1 1670, 3987 5669 >> Mat([5669, 1]) >> 1 1046, 4623 5689 >> Mat([5689, 1]) >> 1 2124, 3565 5693 >> Mat([5693, 1]) >> 1 1193, 4500 5701 >> Mat([5701, 1]) >> 1 385, 5316 5713 >> [29, 1; 197, 1] >> 0 1984, 3729 5713 >> [29, 1; 197, 1] >> 0 2772, 2941 5717 >> Mat([5717, 1]) >> 1 2416, 3301 5725 >> [5, 2; 229, 1] >> 0 107, 5618 5725 >> [5, 2; 229, 1] >> 0 2168, 3557 5729 >> [17, 1; 337, 1] >> 0 863, 4866 5729 >> [17, 1; 337, 1] >> 0 1874, 3855 5737 >> Mat([5737, 1]) >> 1 1126, 4611 5741 >> Mat([5741, 1]) >> 1 2378, 3363 5749 >> Mat([5749, 1]) >> 1 806, 4943 5765 >> [5, 1; 1153, 1] >> 0 1013, 4752 5765 >> [5, 1; 1153, 1] >> 0 1293, 4472 5777 >> [53, 1; 109, 1] >> 0 76, 5701 5777 >> [53, 1; 109, 1] >> 0 2256, 3521 5785 >> [5, 1; 13, 1; 89, 1] >> 0 1123, 4662 5785 >> [5, 1; 13, 1; 89, 1] >> 0 1568, 4217 5785 >> [5, 1; 13, 1; 89, 1] >> 0 1903, 3882 5785 >> [5, 1; 13, 1; 89, 1] >> 0 2348, 3437 5801 >> Mat([5801, 1]) >> 1 1145, 4656 5809 >> [37, 1; 157, 1] >> 0 1856, 3953 5809 >> [37, 1; 157, 1] >> 0 2226, 3583 5813 >> Mat([5813, 1]) >> 1 796, 5017 5821 >> Mat([5821, 1]) >> 1 1242, 4579 5825 >> [5, 2; 233, 1] >> 0 843, 4982 5825 >> [5, 2; 233, 1] >> 0 2707, 3118 5837 >> [13, 1; 449, 1] >> 0 382, 5455 5837 >> [13, 1; 449, 1] >> 0 2761, 3076 5849 >> Mat([5849, 1]) >> 1 2839, 3010 5857 >> Mat([5857, 1]) >> 1 1310, 4547 5861 >> Mat([5861, 1]) >> 1 754, 5107 5869 >> Mat([5869, 1]) >> 1 1042, 4827 5881 >> Mat([5881, 1]) >> 1 1098, 4783 5897 >> Mat([5897, 1]) >> 1 543, 5354 5905 >> [5, 1; 1181, 1] >> 0 243, 5662 5905 >> [5, 1; 1181, 1] >> 0 938, 4967 5917 >> [61, 1; 97, 1] >> 0 172, 5745 5917 >> [61, 1; 97, 1] >> 0 560, 5357 5933 >> [17, 1; 349, 1] >> 0 2656, 3277 5933 >> [17, 1; 349, 1] >> 0 2928, 3005 5941 >> [13, 1; 457, 1] >> 0 109, 5832 5941 >> [13, 1; 457, 1] >> 0 2176, 3765 5945 >> [5, 1; 29, 1; 41, 1] >> 0 278, 5667 5945 >> [5, 1; 29, 1; 41, 1] >> 0 1467, 4478 5945 >> [5, 1; 29, 1; 41, 1] >> 0 2018, 3927 5945 >> [5, 1; 29, 1; 41, 1] >> 0 2738, 3207 5953 >> Mat([5953, 1]) >> 1 2403, 3550 5965 >> [5, 1; 1193, 1] >> 0 1007, 4958 5965 >> [5, 1; 1193, 1] >> 0 2572, 3393 5981 >> Mat([5981, 1]) >> 1 1317, 4664 5989 >> [53, 1; 113, 1] >> 0 1454, 4535 5989 >> [53, 1; 113, 1] >> 0 1567, 4422 5993 >> [13, 1; 461, 1] >> 0 970, 5023 5993 >> [13, 1; 461, 1] >> 0 2257, 3736 6001 >> [17, 1; 353, 1] >> 0 395, 5606 6001 >> [17, 1; 353, 1] >> 0 1101, 4900 6005 >> [5, 1; 1201, 1] >> 0 1152, 4853 6005 >> [5, 1; 1201, 1] >> 0 2353, 3652 6025 >> [5, 2; 241, 1] >> 0 418, 5607 6025 >> [5, 2; 241, 1] >> 0 1382, 4643 6029 >> Mat([6029, 1]) >> 1 1801, 4228 6037 >> Mat([6037, 1]) >> 1 2652, 3385 6053 >> Mat([6053, 1]) >> 1 2832, 3221 6065 >> [5, 1; 1213, 1] >> 0 718, 5347 6065 >> [5, 1; 1213, 1] >> 0 1708, 4357 6073 >> Mat([6073, 1]) >> 1 2524, 3549 6085 >> [5, 1; 1217, 1] >> 0 78, 6007 6085 >> [5, 1; 1217, 1] >> 0 2512, 3573 6089 >> Mat([6089, 1]) >> 1 455, 5634 6101 >> Mat([6101, 1]) >> 1 247, 5854 6109 >> [41, 1; 149, 1] >> 0 1385, 4724 6109 >> [41, 1; 149, 1] >> 0 2428, 3681 6113 >> Mat([6113, 1]) >> 1 1089, 5024 6121 >> Mat([6121, 1]) >> 1 2583, 3538 6133 >> Mat([6133, 1]) >> 1 865, 5268 6145 >> [5, 1; 1229, 1] >> 0 597, 5548 6145 >> [5, 1; 1229, 1] >> 0 632, 5513 6161 >> [61, 1; 101, 1] >> 0 111, 6050 6161 >> [61, 1; 101, 1] >> 0 2939, 3222 6173 >> Mat([6173, 1]) >> 1 2447, 3726 6185 >> [5, 1; 1237, 1] >> 0 1783, 4402 6185 >> [5, 1; 1237, 1] >> 0 1928, 4257 6197 >> Mat([6197, 1]) >> 1 2007, 4190 6205 >> [5, 1; 17, 1; 73, 1] >> 0 557, 5648 6205 >> [5, 1; 17, 1; 73, 1] >> 0 922, 5283 6205 >> [5, 1; 17, 1; 73, 1] >> 0 1798, 4407 6205 >> [5, 1; 17, 1; 73, 1] >> 0 2163, 4042 6217 >> Mat([6217, 1]) >> 1 2372, 3845 6221 >> Mat([6221, 1]) >> 1 1121, 5100 6229 >> Mat([6229, 1]) >> 1 1451, 4778 6245 >> [5, 1; 1249, 1] >> 0 1913, 4332 6245 >> [5, 1; 1249, 1] >> 0 3083, 3162 6253 >> [13, 2; 37, 1] >> 0 746, 5507 6253 >> [13, 2; 37, 1] >> 0 2436, 3817 6257 >> Mat([6257, 1]) >> 1 1584, 4673 6269 >> Mat([6269, 1]) >> 1 1523, 4746 6277 >> Mat([6277, 1]) >> 1 1033, 5244 6301 >> Mat([6301, 1]) >> 1 2184, 4117 6305 >> [5, 1; 13, 1; 97, 1] >> 0 463, 5842 6305 >> [5, 1; 13, 1; 97, 1] >> 0 798, 5507 6305 >> [5, 1; 13, 1; 97, 1] >> 0 1477, 4828 6305 >> [5, 1; 13, 1; 97, 1] >> 0 2738, 3567 6317 >> Mat([6317, 1]) >> 1 1963, 4354 6329 >> Mat([6329, 1]) >> 1 2219, 4110 6337 >> Mat([6337, 1]) >> 1 178, 6159 6341 >> [17, 1; 373, 1] >> 0 642, 5699 6341 >> [17, 1; 373, 1] >> 0 2342, 3999 6353 >> Mat([6353, 1]) >> 1 1392, 4961 6361 >> Mat([6361, 1]) >> 1 1751, 4610 6373 >> Mat([6373, 1]) >> 1 1879, 4494 6385 >> [5, 1; 1277, 1] >> 0 113, 6272 6385 >> [5, 1; 1277, 1] >> 0 2667, 3718 6389 >> Mat([6389, 1]) >> 1 2092, 4297 6397 >> Mat([6397, 1]) >> 1 1302, 5095 6401 >> [37, 1; 173, 1] >> 0 80, 6321 6401 >> [37, 1; 173, 1] >> 0 253, 6148 6409 >> [13, 1; 17, 1; 29, 1] >> 0 684, 5725 6409 >> [13, 1; 17, 1; 29, 1] >> 0 1815, 4594 6409 >> [13, 1; 17, 1; 29, 1] >> 0 2163, 4246 6409 >> [13, 1; 17, 1; 29, 1] >> 0 3115, 3294 6421 >> Mat([6421, 1]) >> 1 825, 5596 6425 >> [5, 2; 257, 1] >> 0 2843, 3582 6425 >> [5, 2; 257, 1] >> 0 3068, 3357 6437 >> [41, 1; 157, 1] >> 0 1385, 5052 6437 >> [41, 1; 157, 1] >> 0 2697, 3740 6445 >> [5, 1; 1289, 1] >> 0 1768, 4677 6445 >> [5, 1; 1289, 1] >> 0 3057, 3388 6449 >> Mat([6449, 1]) >> 1 1854, 4595 6469 >> Mat([6469, 1]) >> 1 2977, 3492 6473 >> Mat([6473, 1]) >> 1 1808, 4665 6481 >> Mat([6481, 1]) >> 1 729, 5752 6485 >> [5, 1; 1297, 1] >> 0 1333, 5152 6485 >> [5, 1; 1297, 1] >> 0 2558, 3927 6497 >> [73, 1; 89, 1] >> 0 411, 6086 6497 >> [73, 1; 89, 1] >> 0 1725, 4772 6505 >> [5, 1; 1301, 1] >> 0 1352, 5153 6505 >> [5, 1; 1301, 1] >> 0 2653, 3852 6521 >> Mat([6521, 1]) >> 1 2364, 4157 6529 >> Mat([6529, 1]) >> 1 2311, 4218 6553 >> Mat([6553, 1]) >> 1 3186, 3367 6565 >> [5, 1; 13, 1; 101, 1] >> 0 697, 5868 6565 >> [5, 1; 13, 1; 101, 1] >> 0 798, 5767 6565 >> [5, 1; 13, 1; 101, 1] >> 0 1828, 4737 6565 >> [5, 1; 13, 1; 101, 1] >> 0 3242, 3323 6569 >> Mat([6569, 1]) >> 1 3038, 3531 6577 >> Mat([6577, 1]) >> 1 1624, 4953 6581 >> Mat([6581, 1]) >> 1 2727, 3854 6605 >> [5, 1; 1321, 1] >> 0 257, 6348 6605 >> [5, 1; 1321, 1] >> 0 1578, 5027 6613 >> [17, 1; 389, 1] >> 0 115, 6498 6613 >> [17, 1; 389, 1] >> 0 1441, 5172 6617 >> [13, 1; 509, 1] >> 0 1828, 4789 6617 >> [13, 1; 509, 1] >> 0 2244, 4373 6625 >> [5, 3; 53, 1] >> 0 182, 6443 6625 >> [5, 3; 53, 1] >> 0 818, 5807 6637 >> Mat([6637, 1]) >> 1 2828, 3809 6641 >> [29, 1; 229, 1] >> 0 336, 6305 6641 >> [29, 1; 229, 1] >> 0 1496, 5145 6649 >> [61, 1; 109, 1] >> 0 294, 6355 6649 >> [61, 1; 109, 1] >> 0 621, 6028 6653 >> Mat([6653, 1]) >> 1 752, 5901 6661 >> Mat([6661, 1]) >> 1 658, 6003 6673 >> Mat([6673, 1]) >> 1 2437, 4236 6689 >> Mat([6689, 1]) >> 1 2759, 3930 6697 >> [37, 1; 181, 1] >> 0 524, 6173 6697 >> [37, 1; 181, 1] >> 0 1067, 5630 6701 >> Mat([6701, 1]) >> 1 1721, 4980 6709 >> Mat([6709, 1]) >> 1 2150, 4559 6725 >> [5, 2; 269, 1] >> 0 82, 6643 6725 >> [5, 2; 269, 1] >> 0 1532, 5193 6733 >> Mat([6733, 1]) >> 1 2217, 4516 6737 >> Mat([6737, 1]) >> 1 2393, 4344 6749 >> [17, 1; 397, 1] >> 0 1254, 5495 6749 >> [17, 1; 397, 1] >> 0 2716, 4033 6757 >> [29, 1; 233, 1] >> 0 2419, 4338 6757 >> [29, 1; 233, 1] >> 0 3173, 3584 6761 >> Mat([6761, 1]) >> 1 1775, 4986 6773 >> [13, 1; 521, 1] >> 0 2319, 4454 6773 >> [13, 1; 521, 1] >> 0 2891, 3882 6781 >> Mat([6781, 1]) >> 1 995, 5786 6793 >> Mat([6793, 1]) >> 1 709, 6084 6805 >> [5, 1; 1361, 1] >> 0 747, 6058 6805 >> [5, 1; 1361, 1] >> 0 2108, 4697 6817 >> [17, 1; 401, 1] >> 0 421, 6396 6817 >> [17, 1; 401, 1] >> 0 1985, 4832 6829 >> Mat([6829, 1]) >> 1 1596, 5233 6833 >> Mat([6833, 1]) >> 1 1307, 5526 6841 >> Mat([6841, 1]) >> 1 1625, 5216 6845 >> [5, 1; 37, 2] >> 0 117, 6728 6845 >> [5, 1; 37, 2] >> 0 1252, 5593 6857 >> Mat([6857, 1]) >> 1 Exercise for the readers from the previous centuries: Come up with a routine to generate n's with complete set of known (a, b) pairs to determine if they have only-one or more prime factors. Last fiddled with by a1call on 2021-01-12 at 05:27