"Rashid Naimi"
Oct 2015
Remote to Here/There
22·503 Posts
|
Some more insights from the future (just kidding  ).
So it turns out that the number of (a, b) pairs for each n is a function of number of prime factors of n.
If n is prime or otherwise a power of a prime there is only one pair of positive integers (a, b) satisfying the condition:
a+b=n
and
n | ab-1
Where valuation(n-1,2) > 1
---------------------
If n has 2 prime factors there will be 2 pairs of (a, b)'s
if n has 3 prime factors there will be 4. pairs of (a, b)'s
....
Furthermore the differences of multipair (a, b)'s from different pairs will have a common factor with n.
so for n =65
(a, b) 1 = ( 8, 57)
(a, b) 2 = (18, 47)
and
gcd(18-8,65) == gcd(47-57,65) = 5
gcd(57-18,65) == gcd(47-8,65) = 13
where
65 = 5*13
Code:
\\DSZ-100-A by Rashid Naimi 1/12/2221
forstep(n=3,19^3,2,{
for(a=2,(n-1)/2,
b=n-a;
m=lift(Mod(a*b,n));
if(m==1,
print("\n",n," >> ",factor(n)," >> ",isprime(n));
print(a,", ",b);
);
);
})
Output:
Code:
5 >> Mat([5, 1]) >> 1
2, 3
13 >> Mat([13, 1]) >> 1
5, 8
17 >> Mat([17, 1]) >> 1
4, 13
25 >> Mat([5, 2]) >> 0
7, 18
29 >> Mat([29, 1]) >> 1
12, 17
37 >> Mat([37, 1]) >> 1
6, 31
41 >> Mat([41, 1]) >> 1
9, 32
53 >> Mat([53, 1]) >> 1
23, 30
61 >> Mat([61, 1]) >> 1
11, 50
65 >> [5, 1; 13, 1] >> 0
8, 57
65 >> [5, 1; 13, 1] >> 0
18, 47
73 >> Mat([73, 1]) >> 1
27, 46
85 >> [5, 1; 17, 1] >> 0
13, 72
85 >> [5, 1; 17, 1] >> 0
38, 47
89 >> Mat([89, 1]) >> 1
34, 55
97 >> Mat([97, 1]) >> 1
22, 75
101 >> Mat([101, 1]) >> 1
10, 91
109 >> Mat([109, 1]) >> 1
33, 76
113 >> Mat([113, 1]) >> 1
15, 98
125 >> Mat([5, 3]) >> 0
57, 68
137 >> Mat([137, 1]) >> 1
37, 100
145 >> [5, 1; 29, 1] >> 0
12, 133
145 >> [5, 1; 29, 1] >> 0
17, 128
149 >> Mat([149, 1]) >> 1
44, 105
157 >> Mat([157, 1]) >> 1
28, 129
169 >> Mat([13, 2]) >> 0
70, 99
173 >> Mat([173, 1]) >> 1
80, 93
181 >> Mat([181, 1]) >> 1
19, 162
185 >> [5, 1; 37, 1] >> 0
43, 142
185 >> [5, 1; 37, 1] >> 0
68, 117
193 >> Mat([193, 1]) >> 1
81, 112
197 >> Mat([197, 1]) >> 1
14, 183
205 >> [5, 1; 41, 1] >> 0
32, 173
205 >> [5, 1; 41, 1] >> 0
73, 132
221 >> [13, 1; 17, 1] >> 0
21, 200
221 >> [13, 1; 17, 1] >> 0
47, 174
229 >> Mat([229, 1]) >> 1
107, 122
233 >> Mat([233, 1]) >> 1
89, 144
241 >> Mat([241, 1]) >> 1
64, 177
257 >> Mat([257, 1]) >> 1
16, 241
265 >> [5, 1; 53, 1] >> 0
23, 242
265 >> [5, 1; 53, 1] >> 0
83, 182
269 >> Mat([269, 1]) >> 1
82, 187
277 >> Mat([277, 1]) >> 1
60, 217
281 >> Mat([281, 1]) >> 1
53, 228
289 >> Mat([17, 2]) >> 0
38, 251
293 >> Mat([293, 1]) >> 1
138, 155
305 >> [5, 1; 61, 1] >> 0
72, 233
305 >> [5, 1; 61, 1] >> 0
133, 172
313 >> Mat([313, 1]) >> 1
25, 288
317 >> Mat([317, 1]) >> 1
114, 203
325 >> [5, 2; 13, 1] >> 0
18, 307
325 >> [5, 2; 13, 1] >> 0
57, 268
337 >> Mat([337, 1]) >> 1
148, 189
349 >> Mat([349, 1]) >> 1
136, 213
353 >> Mat([353, 1]) >> 1
42, 311
365 >> [5, 1; 73, 1] >> 0
27, 338
365 >> [5, 1; 73, 1] >> 0
173, 192
373 >> Mat([373, 1]) >> 1
104, 269
377 >> [13, 1; 29, 1] >> 0
70, 307
377 >> [13, 1; 29, 1] >> 0
99, 278
389 >> Mat([389, 1]) >> 1
115, 274
397 >> Mat([397, 1]) >> 1
63, 334
401 >> Mat([401, 1]) >> 1
20, 381
409 >> Mat([409, 1]) >> 1
143, 266
421 >> Mat([421, 1]) >> 1
29, 392
425 >> [5, 2; 17, 1] >> 0
132, 293
425 >> [5, 2; 17, 1] >> 0
157, 268
433 >> Mat([433, 1]) >> 1
179, 254
445 >> [5, 1; 89, 1] >> 0
123, 322
445 >> [5, 1; 89, 1] >> 0
212, 233
449 >> Mat([449, 1]) >> 1
67, 382
457 >> Mat([457, 1]) >> 1
109, 348
461 >> Mat([461, 1]) >> 1
48, 413
481 >> [13, 1; 37, 1] >> 0
31, 450
481 >> [13, 1; 37, 1] >> 0
216, 265
485 >> [5, 1; 97, 1] >> 0
22, 463
485 >> [5, 1; 97, 1] >> 0
172, 313
493 >> [17, 1; 29, 1] >> 0
157, 336
493 >> [17, 1; 29, 1] >> 0
191, 302
505 >> [5, 1; 101, 1] >> 0
192, 313
505 >> [5, 1; 101, 1] >> 0
212, 293
509 >> Mat([509, 1]) >> 1
208, 301
521 >> Mat([521, 1]) >> 1
235, 286
533 >> [13, 1; 41, 1] >> 0
73, 460
533 >> [13, 1; 41, 1] >> 0
255, 278
541 >> Mat([541, 1]) >> 1
52, 489
545 >> [5, 1; 109, 1] >> 0
33, 512
545 >> [5, 1; 109, 1] >> 0
142, 403
557 >> Mat([557, 1]) >> 1
118, 439
565 >> [5, 1; 113, 1] >> 0
98, 467
565 >> [5, 1; 113, 1] >> 0
128, 437
569 >> Mat([569, 1]) >> 1
86, 483
577 >> Mat([577, 1]) >> 1
24, 553
593 >> Mat([593, 1]) >> 1
77, 516
601 >> Mat([601, 1]) >> 1
125, 476
613 >> Mat([613, 1]) >> 1
35, 578
617 >> Mat([617, 1]) >> 1
194, 423
625 >> Mat([5, 4]) >> 0
182, 443
629 >> [17, 1; 37, 1] >> 0
191, 438
629 >> [17, 1; 37, 1] >> 0
302, 327
641 >> Mat([641, 1]) >> 1
154, 487
653 >> Mat([653, 1]) >> 1
149, 504
661 >> Mat([661, 1]) >> 1
106, 555
673 >> Mat([673, 1]) >> 1
58, 615
677 >> Mat([677, 1]) >> 1
26, 651
685 >> [5, 1; 137, 1] >> 0
37, 648
685 >> [5, 1; 137, 1] >> 0
237, 448
689 >> [13, 1; 53, 1] >> 0
83, 606
689 >> [13, 1; 53, 1] >> 0
242, 447
697 >> [17, 1; 41, 1] >> 0
132, 565
697 >> [17, 1; 41, 1] >> 0
319, 378
701 >> Mat([701, 1]) >> 1
135, 566
709 >> Mat([709, 1]) >> 1
96, 613
725 >> [5, 2; 29, 1] >> 0
157, 568
725 >> [5, 2; 29, 1] >> 0
307, 418
733 >> Mat([733, 1]) >> 1
353, 380
745 >> [5, 1; 149, 1] >> 0
193, 552
745 >> [5, 1; 149, 1] >> 0
342, 403
757 >> Mat([757, 1]) >> 1
87, 670
761 >> Mat([761, 1]) >> 1
39, 722
769 >> Mat([769, 1]) >> 1
62, 707
773 >> Mat([773, 1]) >> 1
317, 456
785 >> [5, 1; 157, 1] >> 0
28, 757
785 >> [5, 1; 157, 1] >> 0
342, 443
793 >> [13, 1; 61, 1] >> 0
255, 538
793 >> [13, 1; 61, 1] >> 0
294, 499
797 >> Mat([797, 1]) >> 1
215, 582
809 >> Mat([809, 1]) >> 1
318, 491
821 >> Mat([821, 1]) >> 1
295, 526
829 >> Mat([829, 1]) >> 1
246, 583
841 >> Mat([29, 2]) >> 0
41, 800
845 >> [5, 1; 13, 2] >> 0
268, 577
845 >> [5, 1; 13, 2] >> 0
408, 437
853 >> Mat([853, 1]) >> 1
333, 520
857 >> Mat([857, 1]) >> 1
207, 650
865 >> [5, 1; 173, 1] >> 0
93, 772
865 >> [5, 1; 173, 1] >> 0
253, 612
877 >> Mat([877, 1]) >> 1
151, 726
881 >> Mat([881, 1]) >> 1
387, 494
901 >> [17, 1; 53, 1] >> 0
30, 871
901 >> [17, 1; 53, 1] >> 0
242, 659
905 >> [5, 1; 181, 1] >> 0
162, 743
905 >> [5, 1; 181, 1] >> 0
343, 562
925 >> [5, 2; 37, 1] >> 0
43, 882
925 >> [5, 2; 37, 1] >> 0
68, 857
929 >> Mat([929, 1]) >> 1
324, 605
937 >> Mat([937, 1]) >> 1
196, 741
941 >> Mat([941, 1]) >> 1
97, 844
949 >> [13, 1; 73, 1] >> 0
265, 684
949 >> [13, 1; 73, 1] >> 0
411, 538
953 >> Mat([953, 1]) >> 1
442, 511
965 >> [5, 1; 193, 1] >> 0
112, 853
965 >> [5, 1; 193, 1] >> 0
467, 498
977 >> Mat([977, 1]) >> 1
252, 725
985 >> [5, 1; 197, 1] >> 0
183, 802
985 >> [5, 1; 197, 1] >> 0
408, 577
997 >> Mat([997, 1]) >> 1
161, 836
1009 >> Mat([1009, 1]) >> 1
469, 540
1013 >> Mat([1013, 1]) >> 1
45, 968
1021 >> Mat([1021, 1]) >> 1
374, 647
1025 >> [5, 2; 41, 1] >> 0
32, 993
1025 >> [5, 2; 41, 1] >> 0
132, 893
1033 >> Mat([1033, 1]) >> 1
355, 678
1037 >> [17, 1; 61, 1] >> 0
72, 965
1037 >> [17, 1; 61, 1] >> 0
438, 599
1049 >> Mat([1049, 1]) >> 1
426, 623
1061 >> Mat([1061, 1]) >> 1
103, 958
1069 >> Mat([1069, 1]) >> 1
249, 820
1073 >> [29, 1; 37, 1] >> 0
191, 882
1073 >> [29, 1; 37, 1] >> 0
302, 771
1093 >> Mat([1093, 1]) >> 1
530, 563
1097 >> Mat([1097, 1]) >> 1
341, 756
1105 >> [5, 1; 13, 1; 17, 1] >> 0
47, 1058
1105 >> [5, 1; 13, 1; 17, 1] >> 0
242, 863
1105 >> [5, 1; 13, 1; 17, 1] >> 0
268, 837
1105 >> [5, 1; 13, 1; 17, 1] >> 0
463, 642
1109 >> Mat([1109, 1]) >> 1
354, 755
1117 >> Mat([1117, 1]) >> 1
214, 903
1129 >> Mat([1129, 1]) >> 1
168, 961
1145 >> [5, 1; 229, 1] >> 0
107, 1038
1145 >> [5, 1; 229, 1] >> 0
122, 1023
1153 >> Mat([1153, 1]) >> 1
140, 1013
1157 >> [13, 1; 89, 1] >> 0
34, 1123
1157 >> [13, 1; 89, 1] >> 0
411, 746
1165 >> [5, 1; 233, 1] >> 0
322, 843
1165 >> [5, 1; 233, 1] >> 0
377, 788
1181 >> Mat([1181, 1]) >> 1
243, 938
1189 >> [29, 1; 41, 1] >> 0
278, 911
1189 >> [29, 1; 41, 1] >> 0
360, 829
1193 >> Mat([1193, 1]) >> 1
186, 1007
1201 >> Mat([1201, 1]) >> 1
49, 1152
1205 >> [5, 1; 241, 1] >> 0
177, 1028
1205 >> [5, 1; 241, 1] >> 0
418, 787
1213 >> Mat([1213, 1]) >> 1
495, 718
1217 >> Mat([1217, 1]) >> 1
78, 1139
1229 >> Mat([1229, 1]) >> 1
597, 632
1237 >> Mat([1237, 1]) >> 1
546, 691
1241 >> [17, 1; 73, 1] >> 0
319, 922
1241 >> [17, 1; 73, 1] >> 0
557, 684
1249 >> Mat([1249, 1]) >> 1
585, 664
1261 >> [13, 1; 97, 1] >> 0
216, 1045
1261 >> [13, 1; 97, 1] >> 0
463, 798
1277 >> Mat([1277, 1]) >> 1
113, 1164
1285 >> [5, 1; 257, 1] >> 0
273, 1012
1285 >> [5, 1; 257, 1] >> 0
498, 787
1289 >> Mat([1289, 1]) >> 1
479, 810
1297 >> Mat([1297, 1]) >> 1
36, 1261
1301 >> Mat([1301, 1]) >> 1
51, 1250
1313 >> [13, 1; 101, 1] >> 0
515, 798
1313 >> [13, 1; 101, 1] >> 0
616, 697
1321 >> Mat([1321, 1]) >> 1
257, 1064
1325 >> [5, 2; 53, 1] >> 0
182, 1143
1325 >> [5, 2; 53, 1] >> 0
507, 818
1345 >> [5, 1; 269, 1] >> 0
82, 1263
1345 >> [5, 1; 269, 1] >> 0
187, 1158
1361 >> Mat([1361, 1]) >> 1
614, 747
1369 >> Mat([37, 2]) >> 0
117, 1252
1373 >> Mat([1373, 1]) >> 1
668, 705
1381 >> Mat([1381, 1]) >> 1
366, 1015
1385 >> [5, 1; 277, 1] >> 0
217, 1168
1385 >> [5, 1; 277, 1] >> 0
337, 1048
1405 >> [5, 1; 281, 1] >> 0
53, 1352
1405 >> [5, 1; 281, 1] >> 0
228, 1177
1409 >> Mat([1409, 1]) >> 1
452, 957
1417 >> [13, 1; 109, 1] >> 0
294, 1123
1417 >> [13, 1; 109, 1] >> 0
512, 905
1429 >> Mat([1429, 1]) >> 1
620, 809
1433 >> Mat([1433, 1]) >> 1
542, 891
1445 >> [5, 1; 17, 2] >> 0
38, 1407
1445 >> [5, 1; 17, 2] >> 0
327, 1118
1453 >> Mat([1453, 1]) >> 1
497, 956
1465 >> [5, 1; 293, 1] >> 0
138, 1327
1465 >> [5, 1; 293, 1] >> 0
448, 1017
1469 >> [13, 1; 113, 1] >> 0
437, 1032
1469 >> [13, 1; 113, 1] >> 0
580, 889
1481 >> Mat([1481, 1]) >> 1
465, 1016
1489 >> Mat([1489, 1]) >> 1
225, 1264
1493 >> Mat([1493, 1]) >> 1
432, 1061
1513 >> [17, 1; 89, 1] >> 0
55, 1458
1513 >> [17, 1; 89, 1] >> 0
123, 1390
1517 >> [37, 1; 41, 1] >> 0
401, 1116
1517 >> [37, 1; 41, 1] >> 0
524, 993
1525 >> [5, 2; 61, 1] >> 0
682, 843
1525 >> [5, 2; 61, 1] >> 0
743, 782
1537 >> [29, 1; 53, 1] >> 0
394, 1143
1537 >> [29, 1; 53, 1] >> 0
447, 1090
1549 >> Mat([1549, 1]) >> 1
88, 1461
1553 >> Mat([1553, 1]) >> 1
339, 1214
1565 >> [5, 1; 313, 1] >> 0
288, 1277
1565 >> [5, 1; 313, 1] >> 0
338, 1227
1585 >> [5, 1; 317, 1] >> 0
203, 1382
1585 >> [5, 1; 317, 1] >> 0
748, 837
1597 >> Mat([1597, 1]) >> 1
610, 987
1601 >> Mat([1601, 1]) >> 1
40, 1561
1609 >> Mat([1609, 1]) >> 1
523, 1086
1613 >> Mat([1613, 1]) >> 1
127, 1486
1621 >> Mat([1621, 1]) >> 1
166, 1455
1625 >> [5, 3; 13, 1] >> 0
57, 1568
1625 >> [5, 3; 13, 1] >> 0
307, 1318
1637 >> Mat([1637, 1]) >> 1
316, 1321
1649 >> [17, 1; 97, 1] >> 0
463, 1186
1649 >> [17, 1; 97, 1] >> 0
701, 948
1657 >> Mat([1657, 1]) >> 1
783, 874
1669 >> Mat([1669, 1]) >> 1
220, 1449
1681 >> Mat([41, 2]) >> 0
378, 1303
1685 >> [5, 1; 337, 1] >> 0
148, 1537
1685 >> [5, 1; 337, 1] >> 0
822, 863
1693 >> Mat([1693, 1]) >> 1
92, 1601
1697 >> Mat([1697, 1]) >> 1
414, 1283
1709 >> Mat([1709, 1]) >> 1
390, 1319
1717 >> [17, 1; 101, 1] >> 0
293, 1424
1717 >> [17, 1; 101, 1] >> 0
616, 1101
1721 >> Mat([1721, 1]) >> 1
473, 1248
1733 >> Mat([1733, 1]) >> 1
410, 1323
1741 >> Mat([1741, 1]) >> 1
59, 1682
1745 >> [5, 1; 349, 1] >> 0
213, 1532
1745 >> [5, 1; 349, 1] >> 0
562, 1183
1753 >> Mat([1753, 1]) >> 1
713, 1040
1765 >> [5, 1; 353, 1] >> 0
42, 1723
1765 >> [5, 1; 353, 1] >> 0
748, 1017
1769 >> [29, 1; 61, 1] >> 0
133, 1636
1769 >> [29, 1; 61, 1] >> 0
621, 1148
1777 >> Mat([1777, 1]) >> 1
775, 1002
1781 >> [13, 1; 137, 1] >> 0
174, 1607
1781 >> [13, 1; 137, 1] >> 0
785, 996
1789 >> Mat([1789, 1]) >> 1
724, 1065
1801 >> Mat([1801, 1]) >> 1
824, 977
1825 >> [5, 2; 73, 1] >> 0
557, 1268
1825 >> [5, 2; 73, 1] >> 0
757, 1068
1853 >> [17, 1; 109, 1] >> 0
251, 1602
1853 >> [17, 1; 109, 1] >> 0
905, 948
1861 >> Mat([1861, 1]) >> 1
61, 1800
1865 >> [5, 1; 373, 1] >> 0
477, 1388
1865 >> [5, 1; 373, 1] >> 0
642, 1223
1873 >> Mat([1873, 1]) >> 1
737, 1136
1877 >> Mat([1877, 1]) >> 1
137, 1740
1885 >> [5, 1; 13, 1; 29, 1] >> 0
278, 1607
1885 >> [5, 1; 13, 1; 29, 1] >> 0
307, 1578
1885 >> [5, 1; 13, 1; 29, 1] >> 0
447, 1438
1885 >> [5, 1; 13, 1; 29, 1] >> 0
853, 1032
1889 >> Mat([1889, 1]) >> 1
331, 1558
1901 >> Mat([1901, 1]) >> 1
218, 1683
1913 >> Mat([1913, 1]) >> 1
712, 1201
1921 >> [17, 1; 113, 1] >> 0
98, 1823
1921 >> [17, 1; 113, 1] >> 0
693, 1228
1933 >> Mat([1933, 1]) >> 1
598, 1335
1937 >> [13, 1; 149, 1] >> 0
44, 1893
1937 >> [13, 1; 149, 1] >> 0
850, 1087
1945 >> [5, 1; 389, 1] >> 0
663, 1282
1945 >> [5, 1; 389, 1] >> 0
893, 1052
1949 >> Mat([1949, 1]) >> 1
589, 1360
1961 >> [37, 1; 53, 1] >> 0
401, 1560
1961 >> [37, 1; 53, 1] >> 0
931, 1030
1973 >> Mat([1973, 1]) >> 1
259, 1714
1985 >> [5, 1; 397, 1] >> 0
63, 1922
1985 >> [5, 1; 397, 1] >> 0
857, 1128
1993 >> Mat([1993, 1]) >> 1
834, 1159
1997 >> Mat([1997, 1]) >> 1
412, 1585
2005 >> [5, 1; 401, 1] >> 0
782, 1223
2005 >> [5, 1; 401, 1] >> 0
822, 1183
2017 >> Mat([2017, 1]) >> 1
229, 1788
2029 >> Mat([2029, 1]) >> 1
992, 1037
2041 >> [13, 1; 157, 1] >> 0
499, 1542
2041 >> [13, 1; 157, 1] >> 0
970, 1071
2045 >> [5, 1; 409, 1] >> 0
143, 1902
2045 >> [5, 1; 409, 1] >> 0
552, 1493
2053 >> Mat([2053, 1]) >> 1
244, 1809
2069 >> Mat([2069, 1]) >> 1
164, 1905
2081 >> Mat([2081, 1]) >> 1
102, 1979
2089 >> Mat([2089, 1]) >> 1
789, 1300
2105 >> [5, 1; 421, 1] >> 0
392, 1713
2105 >> [5, 1; 421, 1] >> 0
813, 1292
2113 >> Mat([2113, 1]) >> 1
65, 2048
2117 >> [29, 1; 73, 1] >> 0
46, 2071
2117 >> [29, 1; 73, 1] >> 0
684, 1433
2125 >> [5, 3; 17, 1] >> 0
557, 1568
2125 >> [5, 3; 17, 1] >> 0
693, 1432
2129 >> Mat([2129, 1]) >> 1
372, 1757
2137 >> Mat([2137, 1]) >> 1
296, 1841
2141 >> Mat([2141, 1]) >> 1
419, 1722
2153 >> Mat([2153, 1]) >> 1
232, 1921
2161 >> Mat([2161, 1]) >> 1
147, 2014
2165 >> [5, 1; 433, 1] >> 0
612, 1553
2165 >> [5, 1; 433, 1] >> 0
687, 1478
2173 >> [41, 1; 53, 1] >> 0
401, 1772
2173 >> [41, 1; 53, 1] >> 0
606, 1567
2197 >> Mat([13, 3]) >> 0
239, 1958
2213 >> Mat([2213, 1]) >> 1
1083, 1130
2221 >> Mat([2221, 1]) >> 1
790, 1431
2225 >> [5, 2; 89, 1] >> 0
568, 1657
2225 >> [5, 2; 89, 1] >> 0
657, 1568
2237 >> Mat([2237, 1]) >> 1
1021, 1216
2245 >> [5, 1; 449, 1] >> 0
67, 2178
2245 >> [5, 1; 449, 1] >> 0
382, 1863
2249 >> [13, 1; 173, 1] >> 0
772, 1477
2249 >> [13, 1; 173, 1] >> 0
785, 1464
2257 >> [37, 1; 61, 1] >> 0
438, 1819
2257 >> [37, 1; 61, 1] >> 0
660, 1597
2269 >> Mat([2269, 1]) >> 1
982, 1287
2273 >> Mat([2273, 1]) >> 1
290, 1983
2281 >> Mat([2281, 1]) >> 1
710, 1571
2285 >> [5, 1; 457, 1] >> 0
348, 1937
2285 >> [5, 1; 457, 1] >> 0
1023, 1262
2293 >> Mat([2293, 1]) >> 1
600, 1693
2297 >> Mat([2297, 1]) >> 1
365, 1932
2305 >> [5, 1; 461, 1] >> 0
48, 2257
2305 >> [5, 1; 461, 1] >> 0
413, 1892
2309 >> Mat([2309, 1]) >> 1
688, 1621
2329 >> [17, 1; 137, 1] >> 0
174, 2155
2329 >> [17, 1; 137, 1] >> 0
922, 1407
2333 >> Mat([2333, 1]) >> 1
108, 2225
2341 >> Mat([2341, 1]) >> 1
153, 2188
2353 >> [13, 1; 181, 1] >> 0
200, 2153
2353 >> [13, 1; 181, 1] >> 0
343, 2010
2357 >> Mat([2357, 1]) >> 1
633, 1724
2377 >> Mat([2377, 1]) >> 1
1134, 1243
2381 >> Mat([2381, 1]) >> 1
69, 2312
2389 >> Mat([2389, 1]) >> 1
285, 2104
2393 >> Mat([2393, 1]) >> 1
971, 1422
2405 >> [5, 1; 13, 1; 37, 1] >> 0
512, 1893
2405 >> [5, 1; 13, 1; 37, 1] >> 0
697, 1708
2405 >> [5, 1; 13, 1; 37, 1] >> 0
993, 1412
2405 >> [5, 1; 13, 1; 37, 1] >> 0
1178, 1227
2417 >> Mat([2417, 1]) >> 1
592, 1825
2425 >> [5, 2; 97, 1] >> 0
507, 1918
2425 >> [5, 2; 97, 1] >> 0
657, 1768
2437 >> Mat([2437, 1]) >> 1
398, 2039
2441 >> Mat([2441, 1]) >> 1
672, 1769
2465 >> [5, 1; 17, 1; 29, 1] >> 0
157, 2308
2465 >> [5, 1; 17, 1; 29, 1] >> 0
302, 2163
2465 >> [5, 1; 17, 1; 29, 1] >> 0
1143, 1322
2465 >> [5, 1; 17, 1; 29, 1] >> 0
1177, 1288
2473 >> Mat([2473, 1]) >> 1
567, 1906
2477 >> Mat([2477, 1]) >> 1
915, 1562
2501 >> [41, 1; 61, 1] >> 0
50, 2451
2501 >> [41, 1; 61, 1] >> 0
255, 2246
2509 >> [13, 1; 193, 1] >> 0
112, 2397
2509 >> [13, 1; 193, 1] >> 0
853, 1656
2521 >> Mat([2521, 1]) >> 1
71, 2450
2525 >> [5, 2; 101, 1] >> 0
293, 2232
2525 >> [5, 2; 101, 1] >> 0
818, 1707
2533 >> [17, 1; 149, 1] >> 0
701, 1832
2533 >> [17, 1; 149, 1] >> 0
999, 1534
2545 >> [5, 1; 509, 1] >> 0
208, 2337
2545 >> [5, 1; 509, 1] >> 0
717, 1828
2549 >> Mat([2549, 1]) >> 1
357, 2192
2557 >> Mat([2557, 1]) >> 1
611, 1946
2561 >> [13, 1; 197, 1] >> 0
408, 2153
2561 >> [13, 1; 197, 1] >> 0
577, 1984
2581 >> [29, 1; 89, 1] >> 0
568, 2013
2581 >> [29, 1; 89, 1] >> 0
945, 1636
2593 >> Mat([2593, 1]) >> 1
918, 1675
2605 >> [5, 1; 521, 1] >> 0
807, 1798
2605 >> [5, 1; 521, 1] >> 0
1277, 1328
2609 >> Mat([2609, 1]) >> 1
389, 2220
2617 >> Mat([2617, 1]) >> 1
667, 1950
2621 >> Mat([2621, 1]) >> 1
472, 2149
2633 >> Mat([2633, 1]) >> 1
1224, 1409
2657 >> Mat([2657, 1]) >> 1
163, 2494
2665 >> [5, 1; 13, 1; 41, 1] >> 0
73, 2592
2665 >> [5, 1; 13, 1; 41, 1] >> 0
278, 2387
2665 >> [5, 1; 13, 1; 41, 1] >> 0
788, 1877
2665 >> [5, 1; 13, 1; 41, 1] >> 0
993, 1672
2669 >> [17, 1; 157, 1] >> 0
914, 1755
2669 >> [17, 1; 157, 1] >> 0
1228, 1441
2677 >> Mat([2677, 1]) >> 1
550, 2127
2689 >> Mat([2689, 1]) >> 1
1142, 1547
2693 >> Mat([2693, 1]) >> 1
859, 1834
2701 >> [37, 1; 73, 1] >> 0
265, 2436
2701 >> [37, 1; 73, 1] >> 0
1141, 1560
2705 >> [5, 1; 541, 1] >> 0
52, 2653
2705 >> [5, 1; 541, 1] >> 0
593, 2112
2713 >> Mat([2713, 1]) >> 1
887, 1826
2725 >> [5, 2; 109, 1] >> 0
1057, 1668
2725 >> [5, 2; 109, 1] >> 0
1232, 1493
2729 >> Mat([2729, 1]) >> 1
1102, 1627
2741 >> Mat([2741, 1]) >> 1
656, 2085
2749 >> Mat([2749, 1]) >> 1
640, 2109
2753 >> Mat([2753, 1]) >> 1
794, 1959
2777 >> Mat([2777, 1]) >> 1
190, 2587
2785 >> [5, 1; 557, 1] >> 0
118, 2667
2785 >> [5, 1; 557, 1] >> 0
1232, 1553
2789 >> Mat([2789, 1]) >> 1
167, 2622
2797 >> Mat([2797, 1]) >> 1
603, 2194
2801 >> Mat([2801, 1]) >> 1
1258, 1543
2809 >> Mat([53, 2]) >> 0
500, 2309
2813 >> [29, 1; 97, 1] >> 0
75, 2738
2813 >> [29, 1; 97, 1] >> 0
1380, 1433
2825 >> [5, 2; 113, 1] >> 0
693, 2132
2825 >> [5, 2; 113, 1] >> 0
1032, 1793
2833 >> Mat([2833, 1]) >> 1
1357, 1476
2837 >> Mat([2837, 1]) >> 1
416, 2421
2845 >> [5, 1; 569, 1] >> 0
483, 2362
2845 >> [5, 1; 569, 1] >> 0
1052, 1793
2857 >> Mat([2857, 1]) >> 1
896, 1961
2861 >> Mat([2861, 1]) >> 1
1202, 1659
2873 >> [13, 2; 17, 1] >> 0
268, 2605
2873 >> [13, 2; 17, 1] >> 0
1084, 1789
2885 >> [5, 1; 577, 1] >> 0
553, 2332
2885 >> [5, 1; 577, 1] >> 0
1178, 1707
2897 >> Mat([2897, 1]) >> 1
1120, 1777
2909 >> Mat([2909, 1]) >> 1
878, 2031
2917 >> Mat([2917, 1]) >> 1
54, 2863
2929 >> [29, 1; 101, 1] >> 0
394, 2535
2929 >> [29, 1; 101, 1] >> 0
1404, 1525
2941 >> [17, 1; 173, 1] >> 0
599, 2342
2941 >> [17, 1; 173, 1] >> 0
1118, 1823
2953 >> Mat([2953, 1]) >> 1
1226, 1727
2957 >> Mat([2957, 1]) >> 1
1222, 1735
2965 >> [5, 1; 593, 1] >> 0
77, 2888
2965 >> [5, 1; 593, 1] >> 0
1263, 1702
2969 >> Mat([2969, 1]) >> 1
964, 2005
2977 >> [13, 1; 229, 1] >> 0
122, 2855
2977 >> [13, 1; 229, 1] >> 0
580, 2397
2993 >> [41, 1; 73, 1] >> 0
173, 2820
2993 >> [41, 1; 73, 1] >> 0
319, 2674
3001 >> Mat([3001, 1]) >> 1
1353, 1648
3005 >> [5, 1; 601, 1] >> 0
1077, 1928
3005 >> [5, 1; 601, 1] >> 0
1327, 1678
3029 >> [13, 1; 233, 1] >> 0
788, 2241
3029 >> [13, 1; 233, 1] >> 0
1487, 1542
3037 >> Mat([3037, 1]) >> 1
281, 2756
3041 >> Mat([3041, 1]) >> 1
774, 2267
3049 >> Mat([3049, 1]) >> 1
475, 2574
3061 >> Mat([3061, 1]) >> 1
501, 2560
3065 >> [5, 1; 613, 1] >> 0
578, 2487
3065 >> [5, 1; 613, 1] >> 0
648, 2417
3077 >> [17, 1; 181, 1] >> 0
200, 2877
3077 >> [17, 1; 181, 1] >> 0
1067, 2010
3085 >> [5, 1; 617, 1] >> 0
423, 2662
3085 >> [5, 1; 617, 1] >> 0
1428, 1657
3089 >> Mat([3089, 1]) >> 1
393, 2696
3109 >> Mat([3109, 1]) >> 1
727, 2382
3121 >> Mat([3121, 1]) >> 1
79, 3042
3125 >> Mat([5, 5]) >> 0
1068, 2057
3133 >> [13, 1; 241, 1] >> 0
177, 2956
3133 >> [13, 1; 241, 1] >> 0
1269, 1864
3137 >> Mat([3137, 1]) >> 1
56, 3081
3145 >> [5, 1; 17, 1; 37, 1] >> 0
302, 2843
3145 >> [5, 1; 17, 1; 37, 1] >> 0
327, 2818
3145 >> [5, 1; 17, 1; 37, 1] >> 0
438, 2707
3145 >> [5, 1; 17, 1; 37, 1] >> 0
1067, 2078
3161 >> [29, 1; 109, 1] >> 0
360, 2801
3161 >> [29, 1; 109, 1] >> 0
621, 2540
3169 >> Mat([3169, 1]) >> 1
1325, 1844
3181 >> Mat([3181, 1]) >> 1
282, 2899
3205 >> [5, 1; 641, 1] >> 0
487, 2718
3205 >> [5, 1; 641, 1] >> 0
1128, 2077
3209 >> Mat([3209, 1]) >> 1
484, 2725
3217 >> Mat([3217, 1]) >> 1
1436, 1781
3221 >> Mat([3221, 1]) >> 1
234, 2987
3229 >> Mat([3229, 1]) >> 1
839, 2390
3233 >> [53, 1; 61, 1] >> 0
560, 2673
3233 >> [53, 1; 61, 1] >> 0
1514, 1719
3253 >> Mat([3253, 1]) >> 1
1598, 1655
3257 >> Mat([3257, 1]) >> 1
291, 2966
3265 >> [5, 1; 653, 1] >> 0
802, 2463
3265 >> [5, 1; 653, 1] >> 0
1157, 2108
3277 >> [29, 1; 113, 1] >> 0
128, 3149
3277 >> [29, 1; 113, 1] >> 0
1032, 2245
3281 >> [17, 1; 193, 1] >> 0
81, 3200
3281 >> [17, 1; 193, 1] >> 0
1432, 1849
3293 >> [37, 1; 89, 1] >> 0
746, 2547
3293 >> [37, 1; 89, 1] >> 0
1301, 1992
3301 >> Mat([3301, 1]) >> 1
1212, 2089
3305 >> [5, 1; 661, 1] >> 0
767, 2538
3305 >> [5, 1; 661, 1] >> 0
1428, 1877
3313 >> Mat([3313, 1]) >> 1
407, 2906
3329 >> Mat([3329, 1]) >> 1
1600, 1729
3341 >> [13, 1; 257, 1] >> 0
1269, 2072
3341 >> [13, 1; 257, 1] >> 0
1526, 1815
3349 >> [17, 1; 197, 1] >> 0
183, 3166
3349 >> [17, 1; 197, 1] >> 0
999, 2350
3361 >> Mat([3361, 1]) >> 1
900, 2461
3365 >> [5, 1; 673, 1] >> 0
58, 3307
3365 >> [5, 1; 673, 1] >> 0
1288, 2077
3373 >> Mat([3373, 1]) >> 1
1105, 2268
3385 >> [5, 1; 677, 1] >> 0
703, 2682
3385 >> [5, 1; 677, 1] >> 0
1328, 2057
3389 >> Mat([3389, 1]) >> 1
1344, 2045
3413 >> Mat([3413, 1]) >> 1
1471, 1942
3425 >> [5, 2; 137, 1] >> 0
1407, 2018
3425 >> [5, 2; 137, 1] >> 0
1607, 1818
3433 >> Mat([3433, 1]) >> 1
1651, 1782
3445 >> [5, 1; 13, 1; 53, 1] >> 0
83, 3362
3445 >> [5, 1; 13, 1; 53, 1] >> 0
242, 3203
3445 >> [5, 1; 13, 1; 53, 1] >> 0
447, 2998
3445 >> [5, 1; 13, 1; 53, 1] >> 0
772, 2673
3449 >> Mat([3449, 1]) >> 1
1122, 2327
3457 >> Mat([3457, 1]) >> 1
708, 2749
3461 >> Mat([3461, 1]) >> 1
1453, 2008
3469 >> Mat([3469, 1]) >> 1
1003, 2466
3485 >> [5, 1; 17, 1; 41, 1] >> 0
132, 3353
3485 >> [5, 1; 17, 1; 41, 1] >> 0
378, 3107
3485 >> [5, 1; 17, 1; 41, 1] >> 0
1262, 2223
3485 >> [5, 1; 17, 1; 41, 1] >> 0
1713, 1772
3497 >> [13, 1; 269, 1] >> 0
187, 3310
3497 >> [13, 1; 269, 1] >> 0
889, 2608
3505 >> [5, 1; 701, 1] >> 0
1267, 2238
3505 >> [5, 1; 701, 1] >> 0
1537, 1968
3517 >> Mat([3517, 1]) >> 1
596, 2921
3529 >> Mat([3529, 1]) >> 1
808, 2721
3533 >> Mat([3533, 1]) >> 1
548, 2985
3541 >> Mat([3541, 1]) >> 1
852, 2689
3545 >> [5, 1; 709, 1] >> 0
613, 2932
3545 >> [5, 1; 709, 1] >> 0
1322, 2223
3557 >> Mat([3557, 1]) >> 1
943, 2614
3581 >> Mat([3581, 1]) >> 1
364, 3217
3589 >> [37, 1; 97, 1] >> 0
216, 3373
3589 >> [37, 1; 97, 1] >> 0
1671, 1918
3593 >> Mat([3593, 1]) >> 1
1153, 2440
3601 >> [13, 1; 277, 1] >> 0
60, 3541
3601 >> [13, 1; 277, 1] >> 0
1048, 2553
3613 >> Mat([3613, 1]) >> 1
85, 3528
3617 >> Mat([3617, 1]) >> 1
1234, 2383
3625 >> [5, 3; 29, 1] >> 0
307, 3318
3625 >> [5, 3; 29, 1] >> 0
568, 3057
3637 >> Mat([3637, 1]) >> 1
1027, 2610
3649 >> [41, 1; 89, 1] >> 0
1034, 2615
3649 >> [41, 1; 89, 1] >> 0
1280, 2369
3653 >> [13, 1; 281, 1] >> 0
1071, 2582
3653 >> [13, 1; 281, 1] >> 0
1633, 2020
3665 >> [5, 1; 733, 1] >> 0
353, 3312
3665 >> [5, 1; 733, 1] >> 0
1113, 2552
3673 >> Mat([3673, 1]) >> 1
994, 2679
3677 >> Mat([3677, 1]) >> 1
1309, 2368
3697 >> Mat([3697, 1]) >> 1
1131, 2566
3701 >> Mat([3701, 1]) >> 1
1279, 2422
3709 >> Mat([3709, 1]) >> 1
1609, 2100
3721 >> Mat([61, 2]) >> 0
682, 3039
3725 >> [5, 2; 149, 1] >> 0
193, 3532
3725 >> [5, 2; 149, 1] >> 0
1832, 1893
3733 >> Mat([3733, 1]) >> 1
851, 2882
3737 >> [37, 1; 101, 1] >> 0
697, 3040
3737 >> [37, 1; 101, 1] >> 0
919, 2818
3757 >> [13, 1; 17, 2] >> 0
616, 3141
3757 >> [13, 1; 17, 2] >> 0
905, 2852
3761 >> Mat([3761, 1]) >> 1
604, 3157
3769 >> Mat([3769, 1]) >> 1
1445, 2324
3785 >> [5, 1; 757, 1] >> 0
87, 3698
3785 >> [5, 1; 757, 1] >> 0
1427, 2358
3793 >> Mat([3793, 1]) >> 1
803, 2990
3797 >> Mat([3797, 1]) >> 1
742, 3055
3805 >> [5, 1; 761, 1] >> 0
722, 3083
3805 >> [5, 1; 761, 1] >> 0
1483, 2322
3809 >> [13, 1; 293, 1] >> 0
138, 3671
3809 >> [13, 1; 293, 1] >> 0
1620, 2189
3821 >> Mat([3821, 1]) >> 1
376, 3445
3833 >> Mat([3833, 1]) >> 1
361, 3472
3845 >> [5, 1; 769, 1] >> 0
62, 3783
3845 >> [5, 1; 769, 1] >> 0
707, 3138
3853 >> Mat([3853, 1]) >> 1
1305, 2548
3865 >> [5, 1; 773, 1] >> 0
317, 3548
3865 >> [5, 1; 773, 1] >> 0
1863, 2002
3869 >> [53, 1; 73, 1] >> 0
1560, 2309
3869 >> [53, 1; 73, 1] >> 0
1779, 2090
3877 >> Mat([3877, 1]) >> 1
502, 3375
3881 >> Mat([3881, 1]) >> 1
197, 3684
3889 >> Mat([3889, 1]) >> 1
454, 3435
3893 >> [17, 1; 229, 1] >> 0
336, 3557
3893 >> [17, 1; 229, 1] >> 0
565, 3328
3917 >> Mat([3917, 1]) >> 1
835, 3082
3925 >> [5, 2; 157, 1] >> 0
443, 3482
3925 >> [5, 2; 157, 1] >> 0
757, 3168
3929 >> Mat([3929, 1]) >> 1
226, 3703
3961 >> [17, 1; 233, 1] >> 0
89, 3872
3961 >> [17, 1; 233, 1] >> 0
1254, 2707
3965 >> [5, 1; 13, 1; 61, 1] >> 0
538, 3427
3965 >> [5, 1; 13, 1; 61, 1] >> 0
1048, 2917
3965 >> [5, 1; 13, 1; 61, 1] >> 0
1087, 2878
3965 >> [5, 1; 13, 1; 61, 1] >> 0
1292, 2673
3973 >> [29, 1; 137, 1] >> 0
1607, 2366
3973 >> [29, 1; 137, 1] >> 0
1955, 2018
3977 >> [41, 1; 97, 1] >> 0
1239, 2738
3977 >> [41, 1; 97, 1] >> 0
1918, 2059
3985 >> [5, 1; 797, 1] >> 0
582, 3403
3985 >> [5, 1; 797, 1] >> 0
1012, 2973
3989 >> Mat([3989, 1]) >> 1
481, 3508
4001 >> Mat([4001, 1]) >> 1
899, 3102
4013 >> Mat([4013, 1]) >> 1
1230, 2783
4021 >> Mat([4021, 1]) >> 1
723, 3298
4033 >> [37, 1; 109, 1] >> 0
142, 3891
4033 >> [37, 1; 109, 1] >> 0
512, 3521
4045 >> [5, 1; 809, 1] >> 0
318, 3727
4045 >> [5, 1; 809, 1] >> 0
1127, 2918
4049 >> Mat([4049, 1]) >> 1
884, 3165
4057 >> Mat([4057, 1]) >> 1
1857, 2200
4069 >> [13, 1; 313, 1] >> 0
1227, 2842
4069 >> [13, 1; 313, 1] >> 0
1903, 2166
4073 >> Mat([4073, 1]) >> 1
549, 3524
4093 >> Mat([4093, 1]) >> 1
1059, 3034
4097 >> [17, 1; 241, 1] >> 0
64, 4033
4097 >> [17, 1; 241, 1] >> 0
659, 3438
4105 >> [5, 1; 821, 1] >> 0
1347, 2758
4105 >> [5, 1; 821, 1] >> 0
1937, 2168
4121 >> [13, 1; 317, 1] >> 0
203, 3918
4121 >> [13, 1; 317, 1] >> 0
837, 3284
4129 >> Mat([4129, 1]) >> 1
895, 3234
4133 >> Mat([4133, 1]) >> 1
733, 3400
4141 >> [41, 1; 101, 1] >> 0
91, 4050
4141 >> [41, 1; 101, 1] >> 0
1303, 2838
4145 >> [5, 1; 829, 1] >> 0
583, 3562
4145 >> [5, 1; 829, 1] >> 0
1412, 2733
4153 >> Mat([4153, 1]) >> 1
1643, 2510
4157 >> Mat([4157, 1]) >> 1
1761, 2396
4177 >> Mat([4177, 1]) >> 1
457, 3720
4181 >> [37, 1; 113, 1] >> 0
919, 3262
4181 >> [37, 1; 113, 1] >> 0
1597, 2584
4201 >> Mat([4201, 1]) >> 1
1154, 3047
4205 >> [5, 1; 29, 2] >> 0
882, 3323
4205 >> [5, 1; 29, 2] >> 0
1723, 2482
4217 >> Mat([4217, 1]) >> 1
1911, 2306
4225 >> [5, 2; 13, 2] >> 0
268, 3957
4225 >> [5, 2; 13, 2] >> 0
1282, 2943
4229 >> Mat([4229, 1]) >> 1
2082, 2147
4241 >> Mat([4241, 1]) >> 1
1044, 3197
4253 >> Mat([4253, 1]) >> 1
561, 3692
4261 >> Mat([4261, 1]) >> 1
721, 3540
4265 >> [5, 1; 853, 1] >> 0
333, 3932
4265 >> [5, 1; 853, 1] >> 0
1373, 2892
4273 >> Mat([4273, 1]) >> 1
1200, 3073
4285 >> [5, 1; 857, 1] >> 0
207, 4078
4285 >> [5, 1; 857, 1] >> 0
1507, 2778
4289 >> Mat([4289, 1]) >> 1
528, 3761
4297 >> Mat([4297, 1]) >> 1
1972, 2325
4321 >> [29, 1; 149, 1] >> 0
1148, 3173
4321 >> [29, 1; 149, 1] >> 0
2042, 2279
4325 >> [5, 2; 173, 1] >> 0
93, 4232
4325 >> [5, 2; 173, 1] >> 0
1118, 3207
4337 >> Mat([4337, 1]) >> 1
886, 3451
4349 >> Mat([4349, 1]) >> 1
608, 3741
4357 >> Mat([4357, 1]) >> 1
66, 4291
4369 >> [17, 1; 257, 1] >> 0
1526, 2843
4369 >> [17, 1; 257, 1] >> 0
1815, 2554
4373 >> Mat([4373, 1]) >> 1
1904, 2469
4381 >> [13, 1; 337, 1] >> 0
148, 4233
4381 >> [13, 1; 337, 1] >> 0
863, 3518
4385 >> [5, 1; 877, 1] >> 0
1028, 3357
4385 >> [5, 1; 877, 1] >> 0
1603, 2782
4397 >> Mat([4397, 1]) >> 1
505, 3892
4405 >> [5, 1; 881, 1] >> 0
387, 4018
4405 >> [5, 1; 881, 1] >> 0
1268, 3137
4409 >> Mat([4409, 1]) >> 1
332, 4077
4421 >> Mat([4421, 1]) >> 1
952, 3469
4441 >> Mat([4441, 1]) >> 1
2146, 2295
4453 >> [61, 1; 73, 1] >> 0
538, 3915
4453 >> [61, 1; 73, 1] >> 0
1414, 3039
4457 >> Mat([4457, 1]) >> 1
1880, 2577
4469 >> [41, 1; 109, 1] >> 0
360, 4109
4469 >> [41, 1; 109, 1] >> 0
1057, 3412
4481 >> Mat([4481, 1]) >> 1
276, 4205
4493 >> Mat([4493, 1]) >> 1
2213, 2280
4505 >> [5, 1; 17, 1; 53, 1] >> 0
242, 4263
4505 >> [5, 1; 17, 1; 53, 1] >> 0
1143, 3362
4505 >> [5, 1; 17, 1; 53, 1] >> 0
1772, 2733
4505 >> [5, 1; 17, 1; 53, 1] >> 0
1832, 2673
4513 >> Mat([4513, 1]) >> 1
95, 4418
4517 >> Mat([4517, 1]) >> 1
1474, 3043
4525 >> [5, 2; 181, 1] >> 0
343, 4182
4525 >> [5, 2; 181, 1] >> 0
743, 3782
4537 >> [13, 1; 349, 1] >> 0
213, 4324
4537 >> [13, 1; 349, 1] >> 0
1958, 2579
4549 >> Mat([4549, 1]) >> 1
1260, 3289
4553 >> [29, 1; 157, 1] >> 0
1699, 2854
4553 >> [29, 1; 157, 1] >> 0
2013, 2540
4561 >> Mat([4561, 1]) >> 1
2205, 2356
4573 >> [17, 1; 269, 1] >> 0
1696, 2877
4573 >> [17, 1; 269, 1] >> 0
2070, 2503
4589 >> [13, 1; 353, 1] >> 0
395, 4194
4589 >> [13, 1; 353, 1] >> 0
1370, 3219
4597 >> Mat([4597, 1]) >> 1
2129, 2468
4621 >> Mat([4621, 1]) >> 1
152, 4469
4625 >> [5, 3; 37, 1] >> 0
68, 4557
4625 >> [5, 3; 37, 1] >> 0
1807, 2818
4633 >> [41, 1; 113, 1] >> 0
1567, 3066
4633 >> [41, 1; 113, 1] >> 0
1936, 2697
4637 >> Mat([4637, 1]) >> 1
2044, 2593
4645 >> [5, 1; 929, 1] >> 0
1253, 3392
4645 >> [5, 1; 929, 1] >> 0
2182, 2463
4649 >> Mat([4649, 1]) >> 1
1846, 2803
4657 >> Mat([4657, 1]) >> 1
1912, 2745
4673 >> Mat([4673, 1]) >> 1
1993, 2680
4685 >> [5, 1; 937, 1] >> 0
1133, 3552
4685 >> [5, 1; 937, 1] >> 0
1678, 3007
4705 >> [5, 1; 941, 1] >> 0
97, 4608
4705 >> [5, 1; 941, 1] >> 0
1038, 3667
4709 >> [17, 1; 277, 1] >> 0
217, 4492
4709 >> [17, 1; 277, 1] >> 0
1602, 3107
4717 >> [53, 1; 89, 1] >> 0
500, 4217
4717 >> [53, 1; 89, 1] >> 0
924, 3793
4721 >> Mat([4721, 1]) >> 1
1697, 3024
4729 >> Mat([4729, 1]) >> 1
1365, 3364
4733 >> Mat([4733, 1]) >> 1
897, 3836
4745 >> [5, 1; 13, 1; 73, 1] >> 0
538, 4207
4745 >> [5, 1; 13, 1; 73, 1] >> 0
1487, 3258
4745 >> [5, 1; 13, 1; 73, 1] >> 0
1633, 3112
4745 >> [5, 1; 13, 1; 73, 1] >> 0
2163, 2582
4765 >> [5, 1; 953, 1] >> 0
442, 4323
4765 >> [5, 1; 953, 1] >> 0
2348, 2417
4777 >> [17, 1; 281, 1] >> 0
1177, 3600
4777 >> [17, 1; 281, 1] >> 0
1458, 3319
4789 >> Mat([4789, 1]) >> 1
1481, 3308
4793 >> Mat([4793, 1]) >> 1
1480, 3313
4801 >> Mat([4801, 1]) >> 1
1403, 3398
4813 >> Mat([4813, 1]) >> 1
1868, 2945
4817 >> Mat([4817, 1]) >> 1
1291, 3526
4825 >> [5, 2; 193, 1] >> 0
1432, 3393
4825 >> [5, 2; 193, 1] >> 0
1818, 3007
4849 >> [13, 1; 373, 1] >> 0
642, 4207
4849 >> [13, 1; 373, 1] >> 0
850, 3999
4861 >> Mat([4861, 1]) >> 1
493, 4368
4877 >> Mat([4877, 1]) >> 1
719, 4158
4885 >> [5, 1; 977, 1] >> 0
252, 4633
4885 >> [5, 1; 977, 1] >> 0
1702, 3183
4889 >> Mat([4889, 1]) >> 1
730, 4159
4901 >> [13, 2; 29, 1] >> 0
70, 4831
4901 >> [13, 2; 29, 1] >> 0
99, 4802
4909 >> Mat([4909, 1]) >> 1
1613, 3296
4913 >> Mat([17, 3]) >> 0
1985, 2928
4925 >> [5, 2; 197, 1] >> 0
1168, 3757
4925 >> [5, 2; 197, 1] >> 0
1393, 3532
4933 >> Mat([4933, 1]) >> 1
1194, 3739
4937 >> Mat([4937, 1]) >> 1
849, 4088
4957 >> Mat([4957, 1]) >> 1
359, 4598
4969 >> Mat([4969, 1]) >> 1
1076, 3893
4973 >> Mat([4973, 1]) >> 1
223, 4750
4981 >> [17, 1; 293, 1] >> 0
2189, 2792
4981 >> [17, 1; 293, 1] >> 0
2206, 2775
4985 >> [5, 1; 997, 1] >> 0
1158, 3827
4985 >> [5, 1; 997, 1] >> 0
1833, 3152
4993 >> Mat([4993, 1]) >> 1
158, 4835
5009 >> Mat([5009, 1]) >> 1
539, 4470
5017 >> [29, 1; 173, 1] >> 0
945, 4072
5017 >> [29, 1; 173, 1] >> 0
1810, 3207
5021 >> Mat([5021, 1]) >> 1
1363, 3658
5045 >> [5, 1; 1009, 1] >> 0
1478, 3567
5045 >> [5, 1; 1009, 1] >> 0
2487, 2558
5057 >> [13, 1; 389, 1] >> 0
1282, 3775
5057 >> [13, 1; 389, 1] >> 0
2449, 2608
5065 >> [5, 1; 1013, 1] >> 0
968, 4097
5065 >> [5, 1; 1013, 1] >> 0
1058, 4007
5069 >> [37, 1; 137, 1] >> 0
1881, 3188
5069 >> [37, 1; 137, 1] >> 0
1955, 3114
5077 >> Mat([5077, 1]) >> 1
858, 4219
5081 >> Mat([5081, 1]) >> 1
2412, 2669
5101 >> Mat([5101, 1]) >> 1
101, 5000
5105 >> [5, 1; 1021, 1] >> 0
647, 4458
5105 >> [5, 1; 1021, 1] >> 0
1668, 3437
5113 >> Mat([5113, 1]) >> 1
2025, 3088
5125 >> [5, 3; 41, 1] >> 0
1057, 4068
5125 >> [5, 3; 41, 1] >> 0
2182, 2943
5141 >> [53, 1; 97, 1] >> 0
507, 4634
5141 >> [53, 1; 97, 1] >> 0
560, 4581
5153 >> Mat([5153, 1]) >> 1
227, 4926
5161 >> [13, 1; 397, 1] >> 0
460, 4701
5161 >> [13, 1; 397, 1] >> 0
2319, 2842
5165 >> [5, 1; 1033, 1] >> 0
678, 4487
5165 >> [5, 1; 1033, 1] >> 0
1388, 3777
5185 >> [5, 1; 17, 1; 61, 1] >> 0
72, 5113
5185 >> [5, 1; 17, 1; 61, 1] >> 0
438, 4747
5185 >> [5, 1; 17, 1; 61, 1] >> 0
2002, 3183
5185 >> [5, 1; 17, 1; 61, 1] >> 0
2512, 2673
5189 >> Mat([5189, 1]) >> 1
2446, 2743
5197 >> Mat([5197, 1]) >> 1
1969, 3228
5209 >> Mat([5209, 1]) >> 1
2098, 3111
5213 >> [13, 1; 401, 1] >> 0
421, 4792
5213 >> [13, 1; 401, 1] >> 0
2426, 2787
5233 >> Mat([5233, 1]) >> 1
2253, 2980
5237 >> Mat([5237, 1]) >> 1
369, 4868
5245 >> [5, 1; 1049, 1] >> 0
623, 4622
5245 >> [5, 1; 1049, 1] >> 0
1672, 3573
5249 >> [29, 1; 181, 1] >> 0
162, 5087
5249 >> [29, 1; 181, 1] >> 0
1467, 3782
5261 >> Mat([5261, 1]) >> 1
827, 4434
5273 >> Mat([5273, 1]) >> 1
944, 4329
5281 >> Mat([5281, 1]) >> 1
1673, 3608
5297 >> Mat([5297, 1]) >> 1
2313, 2984
5305 >> [5, 1; 1061, 1] >> 0
103, 5202
5305 >> [5, 1; 1061, 1] >> 0
958, 4347
5309 >> Mat([5309, 1]) >> 1
1804, 3505
5317 >> [13, 1; 409, 1] >> 0
1084, 4233
5317 >> [13, 1; 409, 1] >> 0
1370, 3947
5321 >> [17, 1; 313, 1] >> 0
914, 4407
5321 >> [17, 1; 313, 1] >> 0
2529, 2792
5329 >> Mat([73, 2]) >> 0
776, 4553
5333 >> Mat([5333, 1]) >> 1
2630, 2703
5345 >> [5, 1; 1069, 1] >> 0
1318, 4027
5345 >> [5, 1; 1069, 1] >> 0
2387, 2958
5353 >> [53, 1; 101, 1] >> 0
394, 4959
5353 >> [53, 1; 101, 1] >> 0
818, 4535
5365 >> [5, 1; 29, 1; 37, 1] >> 0
302, 5063
5365 >> [5, 1; 29, 1; 37, 1] >> 0
882, 4483
5365 >> [5, 1; 29, 1; 37, 1] >> 0
2337, 3028
5365 >> [5, 1; 29, 1; 37, 1] >> 0
2448, 2917
5381 >> Mat([5381, 1]) >> 1
1739, 3642
5389 >> [17, 1; 317, 1] >> 0
837, 4552
5389 >> [17, 1; 317, 1] >> 0
2333, 3056
5393 >> Mat([5393, 1]) >> 1
665, 4728
5413 >> Mat([5413, 1]) >> 1
429, 4984
5417 >> Mat([5417, 1]) >> 1
368, 5049
5429 >> [61, 1; 89, 1] >> 0
233, 5196
5429 >> [61, 1; 89, 1] >> 0
1636, 3793
5437 >> Mat([5437, 1]) >> 1
630, 4807
5441 >> Mat([5441, 1]) >> 1
2452, 2989
5449 >> Mat([5449, 1]) >> 1
635, 4814
5465 >> [5, 1; 1093, 1] >> 0
563, 4902
5465 >> [5, 1; 1093, 1] >> 0
1623, 3842
5473 >> [13, 1; 421, 1] >> 0
450, 5023
5473 >> [13, 1; 421, 1] >> 0
1292, 4181
5477 >> Mat([5477, 1]) >> 1
74, 5403
5485 >> [5, 1; 1097, 1] >> 0
1438, 4047
5485 >> [5, 1; 1097, 1] >> 0
1853, 3632
5501 >> Mat([5501, 1]) >> 1
1115, 4386
5513 >> [37, 1; 149, 1] >> 0
105, 5408
5513 >> [37, 1; 149, 1] >> 0
1893, 3620
5521 >> Mat([5521, 1]) >> 1
765, 4756
5525 >> [5, 2; 13, 1; 17, 1] >> 0
268, 5257
5525 >> [5, 2; 13, 1; 17, 1] >> 0
1568, 3957
5525 >> [5, 2; 13, 1; 17, 1] >> 0
1968, 3557
5525 >> [5, 2; 13, 1; 17, 1] >> 0
2257, 3268
5545 >> [5, 1; 1109, 1] >> 0
1463, 4082
5545 >> [5, 1; 1109, 1] >> 0
2572, 2973
5557 >> Mat([5557, 1]) >> 1
2478, 3079
5569 >> Mat([5569, 1]) >> 1
973, 4596
5573 >> Mat([5573, 1]) >> 1
2017, 3556
5581 >> Mat([5581, 1]) >> 1
1437, 4144
5585 >> [5, 1; 1117, 1] >> 0
903, 4682
5585 >> [5, 1; 1117, 1] >> 0
2448, 3137
5597 >> [29, 1; 193, 1] >> 0
853, 4744
5597 >> [29, 1; 193, 1] >> 0
2042, 3555
5617 >> [41, 1; 137, 1] >> 0
237, 5380
5617 >> [41, 1; 137, 1] >> 0
2018, 3599
5629 >> [13, 1; 433, 1] >> 0
1045, 4584
5629 >> [13, 1; 433, 1] >> 0
2777, 2852
5641 >> Mat([5641, 1]) >> 1
1429, 4212
5645 >> [5, 1; 1129, 1] >> 0
168, 5477
5645 >> [5, 1; 1129, 1] >> 0
1297, 4348
5653 >> Mat([5653, 1]) >> 1
310, 5343
5657 >> Mat([5657, 1]) >> 1
1670, 3987
5669 >> Mat([5669, 1]) >> 1
1046, 4623
5689 >> Mat([5689, 1]) >> 1
2124, 3565
5693 >> Mat([5693, 1]) >> 1
1193, 4500
5701 >> Mat([5701, 1]) >> 1
385, 5316
5713 >> [29, 1; 197, 1] >> 0
1984, 3729
5713 >> [29, 1; 197, 1] >> 0
2772, 2941
5717 >> Mat([5717, 1]) >> 1
2416, 3301
5725 >> [5, 2; 229, 1] >> 0
107, 5618
5725 >> [5, 2; 229, 1] >> 0
2168, 3557
5729 >> [17, 1; 337, 1] >> 0
863, 4866
5729 >> [17, 1; 337, 1] >> 0
1874, 3855
5737 >> Mat([5737, 1]) >> 1
1126, 4611
5741 >> Mat([5741, 1]) >> 1
2378, 3363
5749 >> Mat([5749, 1]) >> 1
806, 4943
5765 >> [5, 1; 1153, 1] >> 0
1013, 4752
5765 >> [5, 1; 1153, 1] >> 0
1293, 4472
5777 >> [53, 1; 109, 1] >> 0
76, 5701
5777 >> [53, 1; 109, 1] >> 0
2256, 3521
5785 >> [5, 1; 13, 1; 89, 1] >> 0
1123, 4662
5785 >> [5, 1; 13, 1; 89, 1] >> 0
1568, 4217
5785 >> [5, 1; 13, 1; 89, 1] >> 0
1903, 3882
5785 >> [5, 1; 13, 1; 89, 1] >> 0
2348, 3437
5801 >> Mat([5801, 1]) >> 1
1145, 4656
5809 >> [37, 1; 157, 1] >> 0
1856, 3953
5809 >> [37, 1; 157, 1] >> 0
2226, 3583
5813 >> Mat([5813, 1]) >> 1
796, 5017
5821 >> Mat([5821, 1]) >> 1
1242, 4579
5825 >> [5, 2; 233, 1] >> 0
843, 4982
5825 >> [5, 2; 233, 1] >> 0
2707, 3118
5837 >> [13, 1; 449, 1] >> 0
382, 5455
5837 >> [13, 1; 449, 1] >> 0
2761, 3076
5849 >> Mat([5849, 1]) >> 1
2839, 3010
5857 >> Mat([5857, 1]) >> 1
1310, 4547
5861 >> Mat([5861, 1]) >> 1
754, 5107
5869 >> Mat([5869, 1]) >> 1
1042, 4827
5881 >> Mat([5881, 1]) >> 1
1098, 4783
5897 >> Mat([5897, 1]) >> 1
543, 5354
5905 >> [5, 1; 1181, 1] >> 0
243, 5662
5905 >> [5, 1; 1181, 1] >> 0
938, 4967
5917 >> [61, 1; 97, 1] >> 0
172, 5745
5917 >> [61, 1; 97, 1] >> 0
560, 5357
5933 >> [17, 1; 349, 1] >> 0
2656, 3277
5933 >> [17, 1; 349, 1] >> 0
2928, 3005
5941 >> [13, 1; 457, 1] >> 0
109, 5832
5941 >> [13, 1; 457, 1] >> 0
2176, 3765
5945 >> [5, 1; 29, 1; 41, 1] >> 0
278, 5667
5945 >> [5, 1; 29, 1; 41, 1] >> 0
1467, 4478
5945 >> [5, 1; 29, 1; 41, 1] >> 0
2018, 3927
5945 >> [5, 1; 29, 1; 41, 1] >> 0
2738, 3207
5953 >> Mat([5953, 1]) >> 1
2403, 3550
5965 >> [5, 1; 1193, 1] >> 0
1007, 4958
5965 >> [5, 1; 1193, 1] >> 0
2572, 3393
5981 >> Mat([5981, 1]) >> 1
1317, 4664
5989 >> [53, 1; 113, 1] >> 0
1454, 4535
5989 >> [53, 1; 113, 1] >> 0
1567, 4422
5993 >> [13, 1; 461, 1] >> 0
970, 5023
5993 >> [13, 1; 461, 1] >> 0
2257, 3736
6001 >> [17, 1; 353, 1] >> 0
395, 5606
6001 >> [17, 1; 353, 1] >> 0
1101, 4900
6005 >> [5, 1; 1201, 1] >> 0
1152, 4853
6005 >> [5, 1; 1201, 1] >> 0
2353, 3652
6025 >> [5, 2; 241, 1] >> 0
418, 5607
6025 >> [5, 2; 241, 1] >> 0
1382, 4643
6029 >> Mat([6029, 1]) >> 1
1801, 4228
6037 >> Mat([6037, 1]) >> 1
2652, 3385
6053 >> Mat([6053, 1]) >> 1
2832, 3221
6065 >> [5, 1; 1213, 1] >> 0
718, 5347
6065 >> [5, 1; 1213, 1] >> 0
1708, 4357
6073 >> Mat([6073, 1]) >> 1
2524, 3549
6085 >> [5, 1; 1217, 1] >> 0
78, 6007
6085 >> [5, 1; 1217, 1] >> 0
2512, 3573
6089 >> Mat([6089, 1]) >> 1
455, 5634
6101 >> Mat([6101, 1]) >> 1
247, 5854
6109 >> [41, 1; 149, 1] >> 0
1385, 4724
6109 >> [41, 1; 149, 1] >> 0
2428, 3681
6113 >> Mat([6113, 1]) >> 1
1089, 5024
6121 >> Mat([6121, 1]) >> 1
2583, 3538
6133 >> Mat([6133, 1]) >> 1
865, 5268
6145 >> [5, 1; 1229, 1] >> 0
597, 5548
6145 >> [5, 1; 1229, 1] >> 0
632, 5513
6161 >> [61, 1; 101, 1] >> 0
111, 6050
6161 >> [61, 1; 101, 1] >> 0
2939, 3222
6173 >> Mat([6173, 1]) >> 1
2447, 3726
6185 >> [5, 1; 1237, 1] >> 0
1783, 4402
6185 >> [5, 1; 1237, 1] >> 0
1928, 4257
6197 >> Mat([6197, 1]) >> 1
2007, 4190
6205 >> [5, 1; 17, 1; 73, 1] >> 0
557, 5648
6205 >> [5, 1; 17, 1; 73, 1] >> 0
922, 5283
6205 >> [5, 1; 17, 1; 73, 1] >> 0
1798, 4407
6205 >> [5, 1; 17, 1; 73, 1] >> 0
2163, 4042
6217 >> Mat([6217, 1]) >> 1
2372, 3845
6221 >> Mat([6221, 1]) >> 1
1121, 5100
6229 >> Mat([6229, 1]) >> 1
1451, 4778
6245 >> [5, 1; 1249, 1] >> 0
1913, 4332
6245 >> [5, 1; 1249, 1] >> 0
3083, 3162
6253 >> [13, 2; 37, 1] >> 0
746, 5507
6253 >> [13, 2; 37, 1] >> 0
2436, 3817
6257 >> Mat([6257, 1]) >> 1
1584, 4673
6269 >> Mat([6269, 1]) >> 1
1523, 4746
6277 >> Mat([6277, 1]) >> 1
1033, 5244
6301 >> Mat([6301, 1]) >> 1
2184, 4117
6305 >> [5, 1; 13, 1; 97, 1] >> 0
463, 5842
6305 >> [5, 1; 13, 1; 97, 1] >> 0
798, 5507
6305 >> [5, 1; 13, 1; 97, 1] >> 0
1477, 4828
6305 >> [5, 1; 13, 1; 97, 1] >> 0
2738, 3567
6317 >> Mat([6317, 1]) >> 1
1963, 4354
6329 >> Mat([6329, 1]) >> 1
2219, 4110
6337 >> Mat([6337, 1]) >> 1
178, 6159
6341 >> [17, 1; 373, 1] >> 0
642, 5699
6341 >> [17, 1; 373, 1] >> 0
2342, 3999
6353 >> Mat([6353, 1]) >> 1
1392, 4961
6361 >> Mat([6361, 1]) >> 1
1751, 4610
6373 >> Mat([6373, 1]) >> 1
1879, 4494
6385 >> [5, 1; 1277, 1] >> 0
113, 6272
6385 >> [5, 1; 1277, 1] >> 0
2667, 3718
6389 >> Mat([6389, 1]) >> 1
2092, 4297
6397 >> Mat([6397, 1]) >> 1
1302, 5095
6401 >> [37, 1; 173, 1] >> 0
80, 6321
6401 >> [37, 1; 173, 1] >> 0
253, 6148
6409 >> [13, 1; 17, 1; 29, 1] >> 0
684, 5725
6409 >> [13, 1; 17, 1; 29, 1] >> 0
1815, 4594
6409 >> [13, 1; 17, 1; 29, 1] >> 0
2163, 4246
6409 >> [13, 1; 17, 1; 29, 1] >> 0
3115, 3294
6421 >> Mat([6421, 1]) >> 1
825, 5596
6425 >> [5, 2; 257, 1] >> 0
2843, 3582
6425 >> [5, 2; 257, 1] >> 0
3068, 3357
6437 >> [41, 1; 157, 1] >> 0
1385, 5052
6437 >> [41, 1; 157, 1] >> 0
2697, 3740
6445 >> [5, 1; 1289, 1] >> 0
1768, 4677
6445 >> [5, 1; 1289, 1] >> 0
3057, 3388
6449 >> Mat([6449, 1]) >> 1
1854, 4595
6469 >> Mat([6469, 1]) >> 1
2977, 3492
6473 >> Mat([6473, 1]) >> 1
1808, 4665
6481 >> Mat([6481, 1]) >> 1
729, 5752
6485 >> [5, 1; 1297, 1] >> 0
1333, 5152
6485 >> [5, 1; 1297, 1] >> 0
2558, 3927
6497 >> [73, 1; 89, 1] >> 0
411, 6086
6497 >> [73, 1; 89, 1] >> 0
1725, 4772
6505 >> [5, 1; 1301, 1] >> 0
1352, 5153
6505 >> [5, 1; 1301, 1] >> 0
2653, 3852
6521 >> Mat([6521, 1]) >> 1
2364, 4157
6529 >> Mat([6529, 1]) >> 1
2311, 4218
6553 >> Mat([6553, 1]) >> 1
3186, 3367
6565 >> [5, 1; 13, 1; 101, 1] >> 0
697, 5868
6565 >> [5, 1; 13, 1; 101, 1] >> 0
798, 5767
6565 >> [5, 1; 13, 1; 101, 1] >> 0
1828, 4737
6565 >> [5, 1; 13, 1; 101, 1] >> 0
3242, 3323
6569 >> Mat([6569, 1]) >> 1
3038, 3531
6577 >> Mat([6577, 1]) >> 1
1624, 4953
6581 >> Mat([6581, 1]) >> 1
2727, 3854
6605 >> [5, 1; 1321, 1] >> 0
257, 6348
6605 >> [5, 1; 1321, 1] >> 0
1578, 5027
6613 >> [17, 1; 389, 1] >> 0
115, 6498
6613 >> [17, 1; 389, 1] >> 0
1441, 5172
6617 >> [13, 1; 509, 1] >> 0
1828, 4789
6617 >> [13, 1; 509, 1] >> 0
2244, 4373
6625 >> [5, 3; 53, 1] >> 0
182, 6443
6625 >> [5, 3; 53, 1] >> 0
818, 5807
6637 >> Mat([6637, 1]) >> 1
2828, 3809
6641 >> [29, 1; 229, 1] >> 0
336, 6305
6641 >> [29, 1; 229, 1] >> 0
1496, 5145
6649 >> [61, 1; 109, 1] >> 0
294, 6355
6649 >> [61, 1; 109, 1] >> 0
621, 6028
6653 >> Mat([6653, 1]) >> 1
752, 5901
6661 >> Mat([6661, 1]) >> 1
658, 6003
6673 >> Mat([6673, 1]) >> 1
2437, 4236
6689 >> Mat([6689, 1]) >> 1
2759, 3930
6697 >> [37, 1; 181, 1] >> 0
524, 6173
6697 >> [37, 1; 181, 1] >> 0
1067, 5630
6701 >> Mat([6701, 1]) >> 1
1721, 4980
6709 >> Mat([6709, 1]) >> 1
2150, 4559
6725 >> [5, 2; 269, 1] >> 0
82, 6643
6725 >> [5, 2; 269, 1] >> 0
1532, 5193
6733 >> Mat([6733, 1]) >> 1
2217, 4516
6737 >> Mat([6737, 1]) >> 1
2393, 4344
6749 >> [17, 1; 397, 1] >> 0
1254, 5495
6749 >> [17, 1; 397, 1] >> 0
2716, 4033
6757 >> [29, 1; 233, 1] >> 0
2419, 4338
6757 >> [29, 1; 233, 1] >> 0
3173, 3584
6761 >> Mat([6761, 1]) >> 1
1775, 4986
6773 >> [13, 1; 521, 1] >> 0
2319, 4454
6773 >> [13, 1; 521, 1] >> 0
2891, 3882
6781 >> Mat([6781, 1]) >> 1
995, 5786
6793 >> Mat([6793, 1]) >> 1
709, 6084
6805 >> [5, 1; 1361, 1] >> 0
747, 6058
6805 >> [5, 1; 1361, 1] >> 0
2108, 4697
6817 >> [17, 1; 401, 1] >> 0
421, 6396
6817 >> [17, 1; 401, 1] >> 0
1985, 4832
6829 >> Mat([6829, 1]) >> 1
1596, 5233
6833 >> Mat([6833, 1]) >> 1
1307, 5526
6841 >> Mat([6841, 1]) >> 1
1625, 5216
6845 >> [5, 1; 37, 2] >> 0
117, 6728
6845 >> [5, 1; 37, 2] >> 0
1252, 5593
6857 >> Mat([6857, 1]) >> 1
Exercise for the readers from the previous centuries:
Come up with a routine to generate n's with complete set of known (a, b) pairs to determine if they have only-one or more prime factors.
Last fiddled with by a1call on 2021-01-12 at 05:27
|