View Single Post
Old 2021-01-12, 05:25   #7
a1call
 
a1call's Avatar
 
"Rashid Naimi"
Oct 2015
Remote to Here/There

22·503 Posts
Default

Some more insights from the future (just kidding).
So it turns out that the number of (a, b) pairs for each n is a function of number of prime factors of n.
If n is prime or otherwise a power of a prime there is only one pair of positive integers (a, b) satisfying the condition:

a+b=n
and
n | ab-1
Where valuation(n-1,2) > 1

---------------------
If n has 2 prime factors there will be 2 pairs of (a, b)'s
if n has 3 prime factors there will be 4. pairs of (a, b)'s
....


Furthermore the differences of multipair (a, b)'s from different pairs will have a common factor with n.
so for n =65
(a, b)1 = ( 8, 57)
(a, b)2 = (18, 47)
and
gcd(18-8,65) == gcd(47-57,65) = 5
gcd(57-18,65) == gcd(47-8,65) = 13

where
65 = 5*13
Code:
\\DSZ-100-A by Rashid Naimi 1/12/2221


forstep(n=3,19^3,2,{
    for(a=2,(n-1)/2,
        b=n-a;
        m=lift(Mod(a*b,n));
        if(m==1,
            print("\n",n," >> ",factor(n)," >> ",isprime(n));
            print(a,", ",b);
        );
    );
})
Output:

Code:

5 >> Mat([5, 1]) >> 1
2, 3

13 >> Mat([13, 1]) >> 1
5, 8

17 >> Mat([17, 1]) >> 1
4, 13

25 >> Mat([5, 2]) >> 0
7, 18

29 >> Mat([29, 1]) >> 1
12, 17

37 >> Mat([37, 1]) >> 1
6, 31

41 >> Mat([41, 1]) >> 1
9, 32

53 >> Mat([53, 1]) >> 1
23, 30

61 >> Mat([61, 1]) >> 1
11, 50

65 >> [5, 1; 13, 1] >> 0
8, 57

65 >> [5, 1; 13, 1] >> 0
18, 47

73 >> Mat([73, 1]) >> 1
27, 46

85 >> [5, 1; 17, 1] >> 0
13, 72

85 >> [5, 1; 17, 1] >> 0
38, 47

89 >> Mat([89, 1]) >> 1
34, 55

97 >> Mat([97, 1]) >> 1
22, 75

101 >> Mat([101, 1]) >> 1
10, 91

109 >> Mat([109, 1]) >> 1
33, 76

113 >> Mat([113, 1]) >> 1
15, 98

125 >> Mat([5, 3]) >> 0
57, 68

137 >> Mat([137, 1]) >> 1
37, 100

145 >> [5, 1; 29, 1] >> 0
12, 133

145 >> [5, 1; 29, 1] >> 0
17, 128

149 >> Mat([149, 1]) >> 1
44, 105

157 >> Mat([157, 1]) >> 1
28, 129

169 >> Mat([13, 2]) >> 0
70, 99

173 >> Mat([173, 1]) >> 1
80, 93

181 >> Mat([181, 1]) >> 1
19, 162

185 >> [5, 1; 37, 1] >> 0
43, 142

185 >> [5, 1; 37, 1] >> 0
68, 117

193 >> Mat([193, 1]) >> 1
81, 112

197 >> Mat([197, 1]) >> 1
14, 183

205 >> [5, 1; 41, 1] >> 0
32, 173

205 >> [5, 1; 41, 1] >> 0
73, 132

221 >> [13, 1; 17, 1] >> 0
21, 200

221 >> [13, 1; 17, 1] >> 0
47, 174

229 >> Mat([229, 1]) >> 1
107, 122

233 >> Mat([233, 1]) >> 1
89, 144

241 >> Mat([241, 1]) >> 1
64, 177

257 >> Mat([257, 1]) >> 1
16, 241

265 >> [5, 1; 53, 1] >> 0
23, 242

265 >> [5, 1; 53, 1] >> 0
83, 182

269 >> Mat([269, 1]) >> 1
82, 187

277 >> Mat([277, 1]) >> 1
60, 217

281 >> Mat([281, 1]) >> 1
53, 228

289 >> Mat([17, 2]) >> 0
38, 251

293 >> Mat([293, 1]) >> 1
138, 155

305 >> [5, 1; 61, 1] >> 0
72, 233

305 >> [5, 1; 61, 1] >> 0
133, 172

313 >> Mat([313, 1]) >> 1
25, 288

317 >> Mat([317, 1]) >> 1
114, 203

325 >> [5, 2; 13, 1] >> 0
18, 307

325 >> [5, 2; 13, 1] >> 0
57, 268

337 >> Mat([337, 1]) >> 1
148, 189

349 >> Mat([349, 1]) >> 1
136, 213

353 >> Mat([353, 1]) >> 1
42, 311

365 >> [5, 1; 73, 1] >> 0
27, 338

365 >> [5, 1; 73, 1] >> 0
173, 192

373 >> Mat([373, 1]) >> 1
104, 269

377 >> [13, 1; 29, 1] >> 0
70, 307

377 >> [13, 1; 29, 1] >> 0
99, 278

389 >> Mat([389, 1]) >> 1
115, 274

397 >> Mat([397, 1]) >> 1
63, 334

401 >> Mat([401, 1]) >> 1
20, 381

409 >> Mat([409, 1]) >> 1
143, 266

421 >> Mat([421, 1]) >> 1
29, 392

425 >> [5, 2; 17, 1] >> 0
132, 293

425 >> [5, 2; 17, 1] >> 0
157, 268

433 >> Mat([433, 1]) >> 1
179, 254

445 >> [5, 1; 89, 1] >> 0
123, 322

445 >> [5, 1; 89, 1] >> 0
212, 233

449 >> Mat([449, 1]) >> 1
67, 382

457 >> Mat([457, 1]) >> 1
109, 348

461 >> Mat([461, 1]) >> 1
48, 413

481 >> [13, 1; 37, 1] >> 0
31, 450

481 >> [13, 1; 37, 1] >> 0
216, 265

485 >> [5, 1; 97, 1] >> 0
22, 463

485 >> [5, 1; 97, 1] >> 0
172, 313

493 >> [17, 1; 29, 1] >> 0
157, 336

493 >> [17, 1; 29, 1] >> 0
191, 302

505 >> [5, 1; 101, 1] >> 0
192, 313

505 >> [5, 1; 101, 1] >> 0
212, 293

509 >> Mat([509, 1]) >> 1
208, 301

521 >> Mat([521, 1]) >> 1
235, 286

533 >> [13, 1; 41, 1] >> 0
73, 460

533 >> [13, 1; 41, 1] >> 0
255, 278

541 >> Mat([541, 1]) >> 1
52, 489

545 >> [5, 1; 109, 1] >> 0
33, 512

545 >> [5, 1; 109, 1] >> 0
142, 403

557 >> Mat([557, 1]) >> 1
118, 439

565 >> [5, 1; 113, 1] >> 0
98, 467

565 >> [5, 1; 113, 1] >> 0
128, 437

569 >> Mat([569, 1]) >> 1
86, 483

577 >> Mat([577, 1]) >> 1
24, 553

593 >> Mat([593, 1]) >> 1
77, 516

601 >> Mat([601, 1]) >> 1
125, 476

613 >> Mat([613, 1]) >> 1
35, 578

617 >> Mat([617, 1]) >> 1
194, 423

625 >> Mat([5, 4]) >> 0
182, 443

629 >> [17, 1; 37, 1] >> 0
191, 438

629 >> [17, 1; 37, 1] >> 0
302, 327

641 >> Mat([641, 1]) >> 1
154, 487

653 >> Mat([653, 1]) >> 1
149, 504

661 >> Mat([661, 1]) >> 1
106, 555

673 >> Mat([673, 1]) >> 1
58, 615

677 >> Mat([677, 1]) >> 1
26, 651

685 >> [5, 1; 137, 1] >> 0
37, 648

685 >> [5, 1; 137, 1] >> 0
237, 448

689 >> [13, 1; 53, 1] >> 0
83, 606

689 >> [13, 1; 53, 1] >> 0
242, 447

697 >> [17, 1; 41, 1] >> 0
132, 565

697 >> [17, 1; 41, 1] >> 0
319, 378

701 >> Mat([701, 1]) >> 1
135, 566

709 >> Mat([709, 1]) >> 1
96, 613

725 >> [5, 2; 29, 1] >> 0
157, 568

725 >> [5, 2; 29, 1] >> 0
307, 418

733 >> Mat([733, 1]) >> 1
353, 380

745 >> [5, 1; 149, 1] >> 0
193, 552

745 >> [5, 1; 149, 1] >> 0
342, 403

757 >> Mat([757, 1]) >> 1
87, 670

761 >> Mat([761, 1]) >> 1
39, 722

769 >> Mat([769, 1]) >> 1
62, 707

773 >> Mat([773, 1]) >> 1
317, 456

785 >> [5, 1; 157, 1] >> 0
28, 757

785 >> [5, 1; 157, 1] >> 0
342, 443

793 >> [13, 1; 61, 1] >> 0
255, 538

793 >> [13, 1; 61, 1] >> 0
294, 499

797 >> Mat([797, 1]) >> 1
215, 582

809 >> Mat([809, 1]) >> 1
318, 491

821 >> Mat([821, 1]) >> 1
295, 526

829 >> Mat([829, 1]) >> 1
246, 583

841 >> Mat([29, 2]) >> 0
41, 800

845 >> [5, 1; 13, 2] >> 0
268, 577

845 >> [5, 1; 13, 2] >> 0
408, 437

853 >> Mat([853, 1]) >> 1
333, 520

857 >> Mat([857, 1]) >> 1
207, 650

865 >> [5, 1; 173, 1] >> 0
93, 772

865 >> [5, 1; 173, 1] >> 0
253, 612

877 >> Mat([877, 1]) >> 1
151, 726

881 >> Mat([881, 1]) >> 1
387, 494

901 >> [17, 1; 53, 1] >> 0
30, 871

901 >> [17, 1; 53, 1] >> 0
242, 659

905 >> [5, 1; 181, 1] >> 0
162, 743

905 >> [5, 1; 181, 1] >> 0
343, 562

925 >> [5, 2; 37, 1] >> 0
43, 882

925 >> [5, 2; 37, 1] >> 0
68, 857

929 >> Mat([929, 1]) >> 1
324, 605

937 >> Mat([937, 1]) >> 1
196, 741

941 >> Mat([941, 1]) >> 1
97, 844

949 >> [13, 1; 73, 1] >> 0
265, 684

949 >> [13, 1; 73, 1] >> 0
411, 538

953 >> Mat([953, 1]) >> 1
442, 511

965 >> [5, 1; 193, 1] >> 0
112, 853

965 >> [5, 1; 193, 1] >> 0
467, 498

977 >> Mat([977, 1]) >> 1
252, 725

985 >> [5, 1; 197, 1] >> 0
183, 802

985 >> [5, 1; 197, 1] >> 0
408, 577

997 >> Mat([997, 1]) >> 1
161, 836

1009 >> Mat([1009, 1]) >> 1
469, 540

1013 >> Mat([1013, 1]) >> 1
45, 968

1021 >> Mat([1021, 1]) >> 1
374, 647

1025 >> [5, 2; 41, 1] >> 0
32, 993

1025 >> [5, 2; 41, 1] >> 0
132, 893

1033 >> Mat([1033, 1]) >> 1
355, 678

1037 >> [17, 1; 61, 1] >> 0
72, 965

1037 >> [17, 1; 61, 1] >> 0
438, 599

1049 >> Mat([1049, 1]) >> 1
426, 623

1061 >> Mat([1061, 1]) >> 1
103, 958

1069 >> Mat([1069, 1]) >> 1
249, 820

1073 >> [29, 1; 37, 1] >> 0
191, 882

1073 >> [29, 1; 37, 1] >> 0
302, 771

1093 >> Mat([1093, 1]) >> 1
530, 563

1097 >> Mat([1097, 1]) >> 1
341, 756

1105 >> [5, 1; 13, 1; 17, 1] >> 0
47, 1058

1105 >> [5, 1; 13, 1; 17, 1] >> 0
242, 863

1105 >> [5, 1; 13, 1; 17, 1] >> 0
268, 837

1105 >> [5, 1; 13, 1; 17, 1] >> 0
463, 642

1109 >> Mat([1109, 1]) >> 1
354, 755

1117 >> Mat([1117, 1]) >> 1
214, 903

1129 >> Mat([1129, 1]) >> 1
168, 961

1145 >> [5, 1; 229, 1] >> 0
107, 1038

1145 >> [5, 1; 229, 1] >> 0
122, 1023

1153 >> Mat([1153, 1]) >> 1
140, 1013

1157 >> [13, 1; 89, 1] >> 0
34, 1123

1157 >> [13, 1; 89, 1] >> 0
411, 746

1165 >> [5, 1; 233, 1] >> 0
322, 843

1165 >> [5, 1; 233, 1] >> 0
377, 788

1181 >> Mat([1181, 1]) >> 1
243, 938

1189 >> [29, 1; 41, 1] >> 0
278, 911

1189 >> [29, 1; 41, 1] >> 0
360, 829

1193 >> Mat([1193, 1]) >> 1
186, 1007

1201 >> Mat([1201, 1]) >> 1
49, 1152

1205 >> [5, 1; 241, 1] >> 0
177, 1028

1205 >> [5, 1; 241, 1] >> 0
418, 787

1213 >> Mat([1213, 1]) >> 1
495, 718

1217 >> Mat([1217, 1]) >> 1
78, 1139

1229 >> Mat([1229, 1]) >> 1
597, 632

1237 >> Mat([1237, 1]) >> 1
546, 691

1241 >> [17, 1; 73, 1] >> 0
319, 922

1241 >> [17, 1; 73, 1] >> 0
557, 684

1249 >> Mat([1249, 1]) >> 1
585, 664

1261 >> [13, 1; 97, 1] >> 0
216, 1045

1261 >> [13, 1; 97, 1] >> 0
463, 798

1277 >> Mat([1277, 1]) >> 1
113, 1164

1285 >> [5, 1; 257, 1] >> 0
273, 1012

1285 >> [5, 1; 257, 1] >> 0
498, 787

1289 >> Mat([1289, 1]) >> 1
479, 810

1297 >> Mat([1297, 1]) >> 1
36, 1261

1301 >> Mat([1301, 1]) >> 1
51, 1250

1313 >> [13, 1; 101, 1] >> 0
515, 798

1313 >> [13, 1; 101, 1] >> 0
616, 697

1321 >> Mat([1321, 1]) >> 1
257, 1064

1325 >> [5, 2; 53, 1] >> 0
182, 1143

1325 >> [5, 2; 53, 1] >> 0
507, 818

1345 >> [5, 1; 269, 1] >> 0
82, 1263

1345 >> [5, 1; 269, 1] >> 0
187, 1158

1361 >> Mat([1361, 1]) >> 1
614, 747

1369 >> Mat([37, 2]) >> 0
117, 1252

1373 >> Mat([1373, 1]) >> 1
668, 705

1381 >> Mat([1381, 1]) >> 1
366, 1015

1385 >> [5, 1; 277, 1] >> 0
217, 1168

1385 >> [5, 1; 277, 1] >> 0
337, 1048

1405 >> [5, 1; 281, 1] >> 0
53, 1352

1405 >> [5, 1; 281, 1] >> 0
228, 1177

1409 >> Mat([1409, 1]) >> 1
452, 957

1417 >> [13, 1; 109, 1] >> 0
294, 1123

1417 >> [13, 1; 109, 1] >> 0
512, 905

1429 >> Mat([1429, 1]) >> 1
620, 809

1433 >> Mat([1433, 1]) >> 1
542, 891

1445 >> [5, 1; 17, 2] >> 0
38, 1407

1445 >> [5, 1; 17, 2] >> 0
327, 1118

1453 >> Mat([1453, 1]) >> 1
497, 956

1465 >> [5, 1; 293, 1] >> 0
138, 1327

1465 >> [5, 1; 293, 1] >> 0
448, 1017

1469 >> [13, 1; 113, 1] >> 0
437, 1032

1469 >> [13, 1; 113, 1] >> 0
580, 889

1481 >> Mat([1481, 1]) >> 1
465, 1016

1489 >> Mat([1489, 1]) >> 1
225, 1264

1493 >> Mat([1493, 1]) >> 1
432, 1061

1513 >> [17, 1; 89, 1] >> 0
55, 1458

1513 >> [17, 1; 89, 1] >> 0
123, 1390

1517 >> [37, 1; 41, 1] >> 0
401, 1116

1517 >> [37, 1; 41, 1] >> 0
524, 993

1525 >> [5, 2; 61, 1] >> 0
682, 843

1525 >> [5, 2; 61, 1] >> 0
743, 782

1537 >> [29, 1; 53, 1] >> 0
394, 1143

1537 >> [29, 1; 53, 1] >> 0
447, 1090

1549 >> Mat([1549, 1]) >> 1
88, 1461

1553 >> Mat([1553, 1]) >> 1
339, 1214

1565 >> [5, 1; 313, 1] >> 0
288, 1277

1565 >> [5, 1; 313, 1] >> 0
338, 1227

1585 >> [5, 1; 317, 1] >> 0
203, 1382

1585 >> [5, 1; 317, 1] >> 0
748, 837

1597 >> Mat([1597, 1]) >> 1
610, 987

1601 >> Mat([1601, 1]) >> 1
40, 1561

1609 >> Mat([1609, 1]) >> 1
523, 1086

1613 >> Mat([1613, 1]) >> 1
127, 1486

1621 >> Mat([1621, 1]) >> 1
166, 1455

1625 >> [5, 3; 13, 1] >> 0
57, 1568

1625 >> [5, 3; 13, 1] >> 0
307, 1318

1637 >> Mat([1637, 1]) >> 1
316, 1321

1649 >> [17, 1; 97, 1] >> 0
463, 1186

1649 >> [17, 1; 97, 1] >> 0
701, 948

1657 >> Mat([1657, 1]) >> 1
783, 874

1669 >> Mat([1669, 1]) >> 1
220, 1449

1681 >> Mat([41, 2]) >> 0
378, 1303

1685 >> [5, 1; 337, 1] >> 0
148, 1537

1685 >> [5, 1; 337, 1] >> 0
822, 863

1693 >> Mat([1693, 1]) >> 1
92, 1601

1697 >> Mat([1697, 1]) >> 1
414, 1283

1709 >> Mat([1709, 1]) >> 1
390, 1319

1717 >> [17, 1; 101, 1] >> 0
293, 1424

1717 >> [17, 1; 101, 1] >> 0
616, 1101

1721 >> Mat([1721, 1]) >> 1
473, 1248

1733 >> Mat([1733, 1]) >> 1
410, 1323

1741 >> Mat([1741, 1]) >> 1
59, 1682

1745 >> [5, 1; 349, 1] >> 0
213, 1532

1745 >> [5, 1; 349, 1] >> 0
562, 1183

1753 >> Mat([1753, 1]) >> 1
713, 1040

1765 >> [5, 1; 353, 1] >> 0
42, 1723

1765 >> [5, 1; 353, 1] >> 0
748, 1017

1769 >> [29, 1; 61, 1] >> 0
133, 1636

1769 >> [29, 1; 61, 1] >> 0
621, 1148

1777 >> Mat([1777, 1]) >> 1
775, 1002

1781 >> [13, 1; 137, 1] >> 0
174, 1607

1781 >> [13, 1; 137, 1] >> 0
785, 996

1789 >> Mat([1789, 1]) >> 1
724, 1065

1801 >> Mat([1801, 1]) >> 1
824, 977

1825 >> [5, 2; 73, 1] >> 0
557, 1268

1825 >> [5, 2; 73, 1] >> 0
757, 1068

1853 >> [17, 1; 109, 1] >> 0
251, 1602

1853 >> [17, 1; 109, 1] >> 0
905, 948

1861 >> Mat([1861, 1]) >> 1
61, 1800

1865 >> [5, 1; 373, 1] >> 0
477, 1388

1865 >> [5, 1; 373, 1] >> 0
642, 1223

1873 >> Mat([1873, 1]) >> 1
737, 1136

1877 >> Mat([1877, 1]) >> 1
137, 1740

1885 >> [5, 1; 13, 1; 29, 1] >> 0
278, 1607

1885 >> [5, 1; 13, 1; 29, 1] >> 0
307, 1578

1885 >> [5, 1; 13, 1; 29, 1] >> 0
447, 1438

1885 >> [5, 1; 13, 1; 29, 1] >> 0
853, 1032

1889 >> Mat([1889, 1]) >> 1
331, 1558

1901 >> Mat([1901, 1]) >> 1
218, 1683

1913 >> Mat([1913, 1]) >> 1
712, 1201

1921 >> [17, 1; 113, 1] >> 0
98, 1823

1921 >> [17, 1; 113, 1] >> 0
693, 1228

1933 >> Mat([1933, 1]) >> 1
598, 1335

1937 >> [13, 1; 149, 1] >> 0
44, 1893

1937 >> [13, 1; 149, 1] >> 0
850, 1087

1945 >> [5, 1; 389, 1] >> 0
663, 1282

1945 >> [5, 1; 389, 1] >> 0
893, 1052

1949 >> Mat([1949, 1]) >> 1
589, 1360

1961 >> [37, 1; 53, 1] >> 0
401, 1560

1961 >> [37, 1; 53, 1] >> 0
931, 1030

1973 >> Mat([1973, 1]) >> 1
259, 1714

1985 >> [5, 1; 397, 1] >> 0
63, 1922

1985 >> [5, 1; 397, 1] >> 0
857, 1128

1993 >> Mat([1993, 1]) >> 1
834, 1159

1997 >> Mat([1997, 1]) >> 1
412, 1585

2005 >> [5, 1; 401, 1] >> 0
782, 1223

2005 >> [5, 1; 401, 1] >> 0
822, 1183

2017 >> Mat([2017, 1]) >> 1
229, 1788

2029 >> Mat([2029, 1]) >> 1
992, 1037

2041 >> [13, 1; 157, 1] >> 0
499, 1542

2041 >> [13, 1; 157, 1] >> 0
970, 1071

2045 >> [5, 1; 409, 1] >> 0
143, 1902

2045 >> [5, 1; 409, 1] >> 0
552, 1493

2053 >> Mat([2053, 1]) >> 1
244, 1809

2069 >> Mat([2069, 1]) >> 1
164, 1905

2081 >> Mat([2081, 1]) >> 1
102, 1979

2089 >> Mat([2089, 1]) >> 1
789, 1300

2105 >> [5, 1; 421, 1] >> 0
392, 1713

2105 >> [5, 1; 421, 1] >> 0
813, 1292

2113 >> Mat([2113, 1]) >> 1
65, 2048

2117 >> [29, 1; 73, 1] >> 0
46, 2071

2117 >> [29, 1; 73, 1] >> 0
684, 1433

2125 >> [5, 3; 17, 1] >> 0
557, 1568

2125 >> [5, 3; 17, 1] >> 0
693, 1432

2129 >> Mat([2129, 1]) >> 1
372, 1757

2137 >> Mat([2137, 1]) >> 1
296, 1841

2141 >> Mat([2141, 1]) >> 1
419, 1722

2153 >> Mat([2153, 1]) >> 1
232, 1921

2161 >> Mat([2161, 1]) >> 1
147, 2014

2165 >> [5, 1; 433, 1] >> 0
612, 1553

2165 >> [5, 1; 433, 1] >> 0
687, 1478

2173 >> [41, 1; 53, 1] >> 0
401, 1772

2173 >> [41, 1; 53, 1] >> 0
606, 1567

2197 >> Mat([13, 3]) >> 0
239, 1958

2213 >> Mat([2213, 1]) >> 1
1083, 1130

2221 >> Mat([2221, 1]) >> 1
790, 1431

2225 >> [5, 2; 89, 1] >> 0
568, 1657

2225 >> [5, 2; 89, 1] >> 0
657, 1568

2237 >> Mat([2237, 1]) >> 1
1021, 1216

2245 >> [5, 1; 449, 1] >> 0
67, 2178

2245 >> [5, 1; 449, 1] >> 0
382, 1863

2249 >> [13, 1; 173, 1] >> 0
772, 1477

2249 >> [13, 1; 173, 1] >> 0
785, 1464

2257 >> [37, 1; 61, 1] >> 0
438, 1819

2257 >> [37, 1; 61, 1] >> 0
660, 1597

2269 >> Mat([2269, 1]) >> 1
982, 1287

2273 >> Mat([2273, 1]) >> 1
290, 1983

2281 >> Mat([2281, 1]) >> 1
710, 1571

2285 >> [5, 1; 457, 1] >> 0
348, 1937

2285 >> [5, 1; 457, 1] >> 0
1023, 1262

2293 >> Mat([2293, 1]) >> 1
600, 1693

2297 >> Mat([2297, 1]) >> 1
365, 1932

2305 >> [5, 1; 461, 1] >> 0
48, 2257

2305 >> [5, 1; 461, 1] >> 0
413, 1892

2309 >> Mat([2309, 1]) >> 1
688, 1621

2329 >> [17, 1; 137, 1] >> 0
174, 2155

2329 >> [17, 1; 137, 1] >> 0
922, 1407

2333 >> Mat([2333, 1]) >> 1
108, 2225

2341 >> Mat([2341, 1]) >> 1
153, 2188

2353 >> [13, 1; 181, 1] >> 0
200, 2153

2353 >> [13, 1; 181, 1] >> 0
343, 2010

2357 >> Mat([2357, 1]) >> 1
633, 1724

2377 >> Mat([2377, 1]) >> 1
1134, 1243

2381 >> Mat([2381, 1]) >> 1
69, 2312

2389 >> Mat([2389, 1]) >> 1
285, 2104

2393 >> Mat([2393, 1]) >> 1
971, 1422

2405 >> [5, 1; 13, 1; 37, 1] >> 0
512, 1893

2405 >> [5, 1; 13, 1; 37, 1] >> 0
697, 1708

2405 >> [5, 1; 13, 1; 37, 1] >> 0
993, 1412

2405 >> [5, 1; 13, 1; 37, 1] >> 0
1178, 1227

2417 >> Mat([2417, 1]) >> 1
592, 1825

2425 >> [5, 2; 97, 1] >> 0
507, 1918

2425 >> [5, 2; 97, 1] >> 0
657, 1768

2437 >> Mat([2437, 1]) >> 1
398, 2039

2441 >> Mat([2441, 1]) >> 1
672, 1769

2465 >> [5, 1; 17, 1; 29, 1] >> 0
157, 2308

2465 >> [5, 1; 17, 1; 29, 1] >> 0
302, 2163

2465 >> [5, 1; 17, 1; 29, 1] >> 0
1143, 1322

2465 >> [5, 1; 17, 1; 29, 1] >> 0
1177, 1288

2473 >> Mat([2473, 1]) >> 1
567, 1906

2477 >> Mat([2477, 1]) >> 1
915, 1562

2501 >> [41, 1; 61, 1] >> 0
50, 2451

2501 >> [41, 1; 61, 1] >> 0
255, 2246

2509 >> [13, 1; 193, 1] >> 0
112, 2397

2509 >> [13, 1; 193, 1] >> 0
853, 1656

2521 >> Mat([2521, 1]) >> 1
71, 2450

2525 >> [5, 2; 101, 1] >> 0
293, 2232

2525 >> [5, 2; 101, 1] >> 0
818, 1707

2533 >> [17, 1; 149, 1] >> 0
701, 1832

2533 >> [17, 1; 149, 1] >> 0
999, 1534

2545 >> [5, 1; 509, 1] >> 0
208, 2337

2545 >> [5, 1; 509, 1] >> 0
717, 1828

2549 >> Mat([2549, 1]) >> 1
357, 2192

2557 >> Mat([2557, 1]) >> 1
611, 1946

2561 >> [13, 1; 197, 1] >> 0
408, 2153

2561 >> [13, 1; 197, 1] >> 0
577, 1984

2581 >> [29, 1; 89, 1] >> 0
568, 2013

2581 >> [29, 1; 89, 1] >> 0
945, 1636

2593 >> Mat([2593, 1]) >> 1
918, 1675

2605 >> [5, 1; 521, 1] >> 0
807, 1798

2605 >> [5, 1; 521, 1] >> 0
1277, 1328

2609 >> Mat([2609, 1]) >> 1
389, 2220

2617 >> Mat([2617, 1]) >> 1
667, 1950

2621 >> Mat([2621, 1]) >> 1
472, 2149

2633 >> Mat([2633, 1]) >> 1
1224, 1409

2657 >> Mat([2657, 1]) >> 1
163, 2494

2665 >> [5, 1; 13, 1; 41, 1] >> 0
73, 2592

2665 >> [5, 1; 13, 1; 41, 1] >> 0
278, 2387

2665 >> [5, 1; 13, 1; 41, 1] >> 0
788, 1877

2665 >> [5, 1; 13, 1; 41, 1] >> 0
993, 1672

2669 >> [17, 1; 157, 1] >> 0
914, 1755

2669 >> [17, 1; 157, 1] >> 0
1228, 1441

2677 >> Mat([2677, 1]) >> 1
550, 2127

2689 >> Mat([2689, 1]) >> 1
1142, 1547

2693 >> Mat([2693, 1]) >> 1
859, 1834

2701 >> [37, 1; 73, 1] >> 0
265, 2436

2701 >> [37, 1; 73, 1] >> 0
1141, 1560

2705 >> [5, 1; 541, 1] >> 0
52, 2653

2705 >> [5, 1; 541, 1] >> 0
593, 2112

2713 >> Mat([2713, 1]) >> 1
887, 1826

2725 >> [5, 2; 109, 1] >> 0
1057, 1668

2725 >> [5, 2; 109, 1] >> 0
1232, 1493

2729 >> Mat([2729, 1]) >> 1
1102, 1627

2741 >> Mat([2741, 1]) >> 1
656, 2085

2749 >> Mat([2749, 1]) >> 1
640, 2109

2753 >> Mat([2753, 1]) >> 1
794, 1959

2777 >> Mat([2777, 1]) >> 1
190, 2587

2785 >> [5, 1; 557, 1] >> 0
118, 2667

2785 >> [5, 1; 557, 1] >> 0
1232, 1553

2789 >> Mat([2789, 1]) >> 1
167, 2622

2797 >> Mat([2797, 1]) >> 1
603, 2194

2801 >> Mat([2801, 1]) >> 1
1258, 1543

2809 >> Mat([53, 2]) >> 0
500, 2309

2813 >> [29, 1; 97, 1] >> 0
75, 2738

2813 >> [29, 1; 97, 1] >> 0
1380, 1433

2825 >> [5, 2; 113, 1] >> 0
693, 2132

2825 >> [5, 2; 113, 1] >> 0
1032, 1793

2833 >> Mat([2833, 1]) >> 1
1357, 1476

2837 >> Mat([2837, 1]) >> 1
416, 2421

2845 >> [5, 1; 569, 1] >> 0
483, 2362

2845 >> [5, 1; 569, 1] >> 0
1052, 1793

2857 >> Mat([2857, 1]) >> 1
896, 1961

2861 >> Mat([2861, 1]) >> 1
1202, 1659

2873 >> [13, 2; 17, 1] >> 0
268, 2605

2873 >> [13, 2; 17, 1] >> 0
1084, 1789

2885 >> [5, 1; 577, 1] >> 0
553, 2332

2885 >> [5, 1; 577, 1] >> 0
1178, 1707

2897 >> Mat([2897, 1]) >> 1
1120, 1777

2909 >> Mat([2909, 1]) >> 1
878, 2031

2917 >> Mat([2917, 1]) >> 1
54, 2863

2929 >> [29, 1; 101, 1] >> 0
394, 2535

2929 >> [29, 1; 101, 1] >> 0
1404, 1525

2941 >> [17, 1; 173, 1] >> 0
599, 2342

2941 >> [17, 1; 173, 1] >> 0
1118, 1823

2953 >> Mat([2953, 1]) >> 1
1226, 1727

2957 >> Mat([2957, 1]) >> 1
1222, 1735

2965 >> [5, 1; 593, 1] >> 0
77, 2888

2965 >> [5, 1; 593, 1] >> 0
1263, 1702

2969 >> Mat([2969, 1]) >> 1
964, 2005

2977 >> [13, 1; 229, 1] >> 0
122, 2855

2977 >> [13, 1; 229, 1] >> 0
580, 2397

2993 >> [41, 1; 73, 1] >> 0
173, 2820

2993 >> [41, 1; 73, 1] >> 0
319, 2674

3001 >> Mat([3001, 1]) >> 1
1353, 1648

3005 >> [5, 1; 601, 1] >> 0
1077, 1928

3005 >> [5, 1; 601, 1] >> 0
1327, 1678

3029 >> [13, 1; 233, 1] >> 0
788, 2241

3029 >> [13, 1; 233, 1] >> 0
1487, 1542

3037 >> Mat([3037, 1]) >> 1
281, 2756

3041 >> Mat([3041, 1]) >> 1
774, 2267

3049 >> Mat([3049, 1]) >> 1
475, 2574

3061 >> Mat([3061, 1]) >> 1
501, 2560

3065 >> [5, 1; 613, 1] >> 0
578, 2487

3065 >> [5, 1; 613, 1] >> 0
648, 2417

3077 >> [17, 1; 181, 1] >> 0
200, 2877

3077 >> [17, 1; 181, 1] >> 0
1067, 2010

3085 >> [5, 1; 617, 1] >> 0
423, 2662

3085 >> [5, 1; 617, 1] >> 0
1428, 1657

3089 >> Mat([3089, 1]) >> 1
393, 2696

3109 >> Mat([3109, 1]) >> 1
727, 2382

3121 >> Mat([3121, 1]) >> 1
79, 3042

3125 >> Mat([5, 5]) >> 0
1068, 2057

3133 >> [13, 1; 241, 1] >> 0
177, 2956

3133 >> [13, 1; 241, 1] >> 0
1269, 1864

3137 >> Mat([3137, 1]) >> 1
56, 3081

3145 >> [5, 1; 17, 1; 37, 1] >> 0
302, 2843

3145 >> [5, 1; 17, 1; 37, 1] >> 0
327, 2818

3145 >> [5, 1; 17, 1; 37, 1] >> 0
438, 2707

3145 >> [5, 1; 17, 1; 37, 1] >> 0
1067, 2078

3161 >> [29, 1; 109, 1] >> 0
360, 2801

3161 >> [29, 1; 109, 1] >> 0
621, 2540

3169 >> Mat([3169, 1]) >> 1
1325, 1844

3181 >> Mat([3181, 1]) >> 1
282, 2899

3205 >> [5, 1; 641, 1] >> 0
487, 2718

3205 >> [5, 1; 641, 1] >> 0
1128, 2077

3209 >> Mat([3209, 1]) >> 1
484, 2725

3217 >> Mat([3217, 1]) >> 1
1436, 1781

3221 >> Mat([3221, 1]) >> 1
234, 2987

3229 >> Mat([3229, 1]) >> 1
839, 2390

3233 >> [53, 1; 61, 1] >> 0
560, 2673

3233 >> [53, 1; 61, 1] >> 0
1514, 1719

3253 >> Mat([3253, 1]) >> 1
1598, 1655

3257 >> Mat([3257, 1]) >> 1
291, 2966

3265 >> [5, 1; 653, 1] >> 0
802, 2463

3265 >> [5, 1; 653, 1] >> 0
1157, 2108

3277 >> [29, 1; 113, 1] >> 0
128, 3149

3277 >> [29, 1; 113, 1] >> 0
1032, 2245

3281 >> [17, 1; 193, 1] >> 0
81, 3200

3281 >> [17, 1; 193, 1] >> 0
1432, 1849

3293 >> [37, 1; 89, 1] >> 0
746, 2547

3293 >> [37, 1; 89, 1] >> 0
1301, 1992

3301 >> Mat([3301, 1]) >> 1
1212, 2089

3305 >> [5, 1; 661, 1] >> 0
767, 2538

3305 >> [5, 1; 661, 1] >> 0
1428, 1877

3313 >> Mat([3313, 1]) >> 1
407, 2906

3329 >> Mat([3329, 1]) >> 1
1600, 1729

3341 >> [13, 1; 257, 1] >> 0
1269, 2072

3341 >> [13, 1; 257, 1] >> 0
1526, 1815

3349 >> [17, 1; 197, 1] >> 0
183, 3166

3349 >> [17, 1; 197, 1] >> 0
999, 2350

3361 >> Mat([3361, 1]) >> 1
900, 2461

3365 >> [5, 1; 673, 1] >> 0
58, 3307

3365 >> [5, 1; 673, 1] >> 0
1288, 2077

3373 >> Mat([3373, 1]) >> 1
1105, 2268

3385 >> [5, 1; 677, 1] >> 0
703, 2682

3385 >> [5, 1; 677, 1] >> 0
1328, 2057

3389 >> Mat([3389, 1]) >> 1
1344, 2045

3413 >> Mat([3413, 1]) >> 1
1471, 1942

3425 >> [5, 2; 137, 1] >> 0
1407, 2018

3425 >> [5, 2; 137, 1] >> 0
1607, 1818

3433 >> Mat([3433, 1]) >> 1
1651, 1782

3445 >> [5, 1; 13, 1; 53, 1] >> 0
83, 3362

3445 >> [5, 1; 13, 1; 53, 1] >> 0
242, 3203

3445 >> [5, 1; 13, 1; 53, 1] >> 0
447, 2998

3445 >> [5, 1; 13, 1; 53, 1] >> 0
772, 2673

3449 >> Mat([3449, 1]) >> 1
1122, 2327

3457 >> Mat([3457, 1]) >> 1
708, 2749

3461 >> Mat([3461, 1]) >> 1
1453, 2008

3469 >> Mat([3469, 1]) >> 1
1003, 2466

3485 >> [5, 1; 17, 1; 41, 1] >> 0
132, 3353

3485 >> [5, 1; 17, 1; 41, 1] >> 0
378, 3107

3485 >> [5, 1; 17, 1; 41, 1] >> 0
1262, 2223

3485 >> [5, 1; 17, 1; 41, 1] >> 0
1713, 1772

3497 >> [13, 1; 269, 1] >> 0
187, 3310

3497 >> [13, 1; 269, 1] >> 0
889, 2608

3505 >> [5, 1; 701, 1] >> 0
1267, 2238

3505 >> [5, 1; 701, 1] >> 0
1537, 1968

3517 >> Mat([3517, 1]) >> 1
596, 2921

3529 >> Mat([3529, 1]) >> 1
808, 2721

3533 >> Mat([3533, 1]) >> 1
548, 2985

3541 >> Mat([3541, 1]) >> 1
852, 2689

3545 >> [5, 1; 709, 1] >> 0
613, 2932

3545 >> [5, 1; 709, 1] >> 0
1322, 2223

3557 >> Mat([3557, 1]) >> 1
943, 2614

3581 >> Mat([3581, 1]) >> 1
364, 3217

3589 >> [37, 1; 97, 1] >> 0
216, 3373

3589 >> [37, 1; 97, 1] >> 0
1671, 1918

3593 >> Mat([3593, 1]) >> 1
1153, 2440

3601 >> [13, 1; 277, 1] >> 0
60, 3541

3601 >> [13, 1; 277, 1] >> 0
1048, 2553

3613 >> Mat([3613, 1]) >> 1
85, 3528

3617 >> Mat([3617, 1]) >> 1
1234, 2383

3625 >> [5, 3; 29, 1] >> 0
307, 3318

3625 >> [5, 3; 29, 1] >> 0
568, 3057

3637 >> Mat([3637, 1]) >> 1
1027, 2610

3649 >> [41, 1; 89, 1] >> 0
1034, 2615

3649 >> [41, 1; 89, 1] >> 0
1280, 2369

3653 >> [13, 1; 281, 1] >> 0
1071, 2582

3653 >> [13, 1; 281, 1] >> 0
1633, 2020

3665 >> [5, 1; 733, 1] >> 0
353, 3312

3665 >> [5, 1; 733, 1] >> 0
1113, 2552

3673 >> Mat([3673, 1]) >> 1
994, 2679

3677 >> Mat([3677, 1]) >> 1
1309, 2368

3697 >> Mat([3697, 1]) >> 1
1131, 2566

3701 >> Mat([3701, 1]) >> 1
1279, 2422

3709 >> Mat([3709, 1]) >> 1
1609, 2100

3721 >> Mat([61, 2]) >> 0
682, 3039

3725 >> [5, 2; 149, 1] >> 0
193, 3532

3725 >> [5, 2; 149, 1] >> 0
1832, 1893

3733 >> Mat([3733, 1]) >> 1
851, 2882

3737 >> [37, 1; 101, 1] >> 0
697, 3040

3737 >> [37, 1; 101, 1] >> 0
919, 2818

3757 >> [13, 1; 17, 2] >> 0
616, 3141

3757 >> [13, 1; 17, 2] >> 0
905, 2852

3761 >> Mat([3761, 1]) >> 1
604, 3157

3769 >> Mat([3769, 1]) >> 1
1445, 2324

3785 >> [5, 1; 757, 1] >> 0
87, 3698

3785 >> [5, 1; 757, 1] >> 0
1427, 2358

3793 >> Mat([3793, 1]) >> 1
803, 2990

3797 >> Mat([3797, 1]) >> 1
742, 3055

3805 >> [5, 1; 761, 1] >> 0
722, 3083

3805 >> [5, 1; 761, 1] >> 0
1483, 2322

3809 >> [13, 1; 293, 1] >> 0
138, 3671

3809 >> [13, 1; 293, 1] >> 0
1620, 2189

3821 >> Mat([3821, 1]) >> 1
376, 3445

3833 >> Mat([3833, 1]) >> 1
361, 3472

3845 >> [5, 1; 769, 1] >> 0
62, 3783

3845 >> [5, 1; 769, 1] >> 0
707, 3138

3853 >> Mat([3853, 1]) >> 1
1305, 2548

3865 >> [5, 1; 773, 1] >> 0
317, 3548

3865 >> [5, 1; 773, 1] >> 0
1863, 2002

3869 >> [53, 1; 73, 1] >> 0
1560, 2309

3869 >> [53, 1; 73, 1] >> 0
1779, 2090

3877 >> Mat([3877, 1]) >> 1
502, 3375

3881 >> Mat([3881, 1]) >> 1
197, 3684

3889 >> Mat([3889, 1]) >> 1
454, 3435

3893 >> [17, 1; 229, 1] >> 0
336, 3557

3893 >> [17, 1; 229, 1] >> 0
565, 3328

3917 >> Mat([3917, 1]) >> 1
835, 3082

3925 >> [5, 2; 157, 1] >> 0
443, 3482

3925 >> [5, 2; 157, 1] >> 0
757, 3168

3929 >> Mat([3929, 1]) >> 1
226, 3703

3961 >> [17, 1; 233, 1] >> 0
89, 3872

3961 >> [17, 1; 233, 1] >> 0
1254, 2707

3965 >> [5, 1; 13, 1; 61, 1] >> 0
538, 3427

3965 >> [5, 1; 13, 1; 61, 1] >> 0
1048, 2917

3965 >> [5, 1; 13, 1; 61, 1] >> 0
1087, 2878

3965 >> [5, 1; 13, 1; 61, 1] >> 0
1292, 2673

3973 >> [29, 1; 137, 1] >> 0
1607, 2366

3973 >> [29, 1; 137, 1] >> 0
1955, 2018

3977 >> [41, 1; 97, 1] >> 0
1239, 2738

3977 >> [41, 1; 97, 1] >> 0
1918, 2059

3985 >> [5, 1; 797, 1] >> 0
582, 3403

3985 >> [5, 1; 797, 1] >> 0
1012, 2973

3989 >> Mat([3989, 1]) >> 1
481, 3508

4001 >> Mat([4001, 1]) >> 1
899, 3102

4013 >> Mat([4013, 1]) >> 1
1230, 2783

4021 >> Mat([4021, 1]) >> 1
723, 3298

4033 >> [37, 1; 109, 1] >> 0
142, 3891

4033 >> [37, 1; 109, 1] >> 0
512, 3521

4045 >> [5, 1; 809, 1] >> 0
318, 3727

4045 >> [5, 1; 809, 1] >> 0
1127, 2918

4049 >> Mat([4049, 1]) >> 1
884, 3165

4057 >> Mat([4057, 1]) >> 1
1857, 2200

4069 >> [13, 1; 313, 1] >> 0
1227, 2842

4069 >> [13, 1; 313, 1] >> 0
1903, 2166

4073 >> Mat([4073, 1]) >> 1
549, 3524

4093 >> Mat([4093, 1]) >> 1
1059, 3034

4097 >> [17, 1; 241, 1] >> 0
64, 4033

4097 >> [17, 1; 241, 1] >> 0
659, 3438

4105 >> [5, 1; 821, 1] >> 0
1347, 2758

4105 >> [5, 1; 821, 1] >> 0
1937, 2168

4121 >> [13, 1; 317, 1] >> 0
203, 3918

4121 >> [13, 1; 317, 1] >> 0
837, 3284

4129 >> Mat([4129, 1]) >> 1
895, 3234

4133 >> Mat([4133, 1]) >> 1
733, 3400

4141 >> [41, 1; 101, 1] >> 0
91, 4050

4141 >> [41, 1; 101, 1] >> 0
1303, 2838

4145 >> [5, 1; 829, 1] >> 0
583, 3562

4145 >> [5, 1; 829, 1] >> 0
1412, 2733

4153 >> Mat([4153, 1]) >> 1
1643, 2510

4157 >> Mat([4157, 1]) >> 1
1761, 2396

4177 >> Mat([4177, 1]) >> 1
457, 3720

4181 >> [37, 1; 113, 1] >> 0
919, 3262

4181 >> [37, 1; 113, 1] >> 0
1597, 2584

4201 >> Mat([4201, 1]) >> 1
1154, 3047

4205 >> [5, 1; 29, 2] >> 0
882, 3323

4205 >> [5, 1; 29, 2] >> 0
1723, 2482

4217 >> Mat([4217, 1]) >> 1
1911, 2306

4225 >> [5, 2; 13, 2] >> 0
268, 3957

4225 >> [5, 2; 13, 2] >> 0
1282, 2943

4229 >> Mat([4229, 1]) >> 1
2082, 2147

4241 >> Mat([4241, 1]) >> 1
1044, 3197

4253 >> Mat([4253, 1]) >> 1
561, 3692

4261 >> Mat([4261, 1]) >> 1
721, 3540

4265 >> [5, 1; 853, 1] >> 0
333, 3932

4265 >> [5, 1; 853, 1] >> 0
1373, 2892

4273 >> Mat([4273, 1]) >> 1
1200, 3073

4285 >> [5, 1; 857, 1] >> 0
207, 4078

4285 >> [5, 1; 857, 1] >> 0
1507, 2778

4289 >> Mat([4289, 1]) >> 1
528, 3761

4297 >> Mat([4297, 1]) >> 1
1972, 2325

4321 >> [29, 1; 149, 1] >> 0
1148, 3173

4321 >> [29, 1; 149, 1] >> 0
2042, 2279

4325 >> [5, 2; 173, 1] >> 0
93, 4232

4325 >> [5, 2; 173, 1] >> 0
1118, 3207

4337 >> Mat([4337, 1]) >> 1
886, 3451

4349 >> Mat([4349, 1]) >> 1
608, 3741

4357 >> Mat([4357, 1]) >> 1
66, 4291

4369 >> [17, 1; 257, 1] >> 0
1526, 2843

4369 >> [17, 1; 257, 1] >> 0
1815, 2554

4373 >> Mat([4373, 1]) >> 1
1904, 2469

4381 >> [13, 1; 337, 1] >> 0
148, 4233

4381 >> [13, 1; 337, 1] >> 0
863, 3518

4385 >> [5, 1; 877, 1] >> 0
1028, 3357

4385 >> [5, 1; 877, 1] >> 0
1603, 2782

4397 >> Mat([4397, 1]) >> 1
505, 3892

4405 >> [5, 1; 881, 1] >> 0
387, 4018

4405 >> [5, 1; 881, 1] >> 0
1268, 3137

4409 >> Mat([4409, 1]) >> 1
332, 4077

4421 >> Mat([4421, 1]) >> 1
952, 3469

4441 >> Mat([4441, 1]) >> 1
2146, 2295

4453 >> [61, 1; 73, 1] >> 0
538, 3915

4453 >> [61, 1; 73, 1] >> 0
1414, 3039

4457 >> Mat([4457, 1]) >> 1
1880, 2577

4469 >> [41, 1; 109, 1] >> 0
360, 4109

4469 >> [41, 1; 109, 1] >> 0
1057, 3412

4481 >> Mat([4481, 1]) >> 1
276, 4205

4493 >> Mat([4493, 1]) >> 1
2213, 2280

4505 >> [5, 1; 17, 1; 53, 1] >> 0
242, 4263

4505 >> [5, 1; 17, 1; 53, 1] >> 0
1143, 3362

4505 >> [5, 1; 17, 1; 53, 1] >> 0
1772, 2733

4505 >> [5, 1; 17, 1; 53, 1] >> 0
1832, 2673

4513 >> Mat([4513, 1]) >> 1
95, 4418

4517 >> Mat([4517, 1]) >> 1
1474, 3043

4525 >> [5, 2; 181, 1] >> 0
343, 4182

4525 >> [5, 2; 181, 1] >> 0
743, 3782

4537 >> [13, 1; 349, 1] >> 0
213, 4324

4537 >> [13, 1; 349, 1] >> 0
1958, 2579

4549 >> Mat([4549, 1]) >> 1
1260, 3289

4553 >> [29, 1; 157, 1] >> 0
1699, 2854

4553 >> [29, 1; 157, 1] >> 0
2013, 2540

4561 >> Mat([4561, 1]) >> 1
2205, 2356

4573 >> [17, 1; 269, 1] >> 0
1696, 2877

4573 >> [17, 1; 269, 1] >> 0
2070, 2503

4589 >> [13, 1; 353, 1] >> 0
395, 4194

4589 >> [13, 1; 353, 1] >> 0
1370, 3219

4597 >> Mat([4597, 1]) >> 1
2129, 2468

4621 >> Mat([4621, 1]) >> 1
152, 4469

4625 >> [5, 3; 37, 1] >> 0
68, 4557

4625 >> [5, 3; 37, 1] >> 0
1807, 2818

4633 >> [41, 1; 113, 1] >> 0
1567, 3066

4633 >> [41, 1; 113, 1] >> 0
1936, 2697

4637 >> Mat([4637, 1]) >> 1
2044, 2593

4645 >> [5, 1; 929, 1] >> 0
1253, 3392

4645 >> [5, 1; 929, 1] >> 0
2182, 2463

4649 >> Mat([4649, 1]) >> 1
1846, 2803

4657 >> Mat([4657, 1]) >> 1
1912, 2745

4673 >> Mat([4673, 1]) >> 1
1993, 2680

4685 >> [5, 1; 937, 1] >> 0
1133, 3552

4685 >> [5, 1; 937, 1] >> 0
1678, 3007

4705 >> [5, 1; 941, 1] >> 0
97, 4608

4705 >> [5, 1; 941, 1] >> 0
1038, 3667

4709 >> [17, 1; 277, 1] >> 0
217, 4492

4709 >> [17, 1; 277, 1] >> 0
1602, 3107

4717 >> [53, 1; 89, 1] >> 0
500, 4217

4717 >> [53, 1; 89, 1] >> 0
924, 3793

4721 >> Mat([4721, 1]) >> 1
1697, 3024

4729 >> Mat([4729, 1]) >> 1
1365, 3364

4733 >> Mat([4733, 1]) >> 1
897, 3836

4745 >> [5, 1; 13, 1; 73, 1] >> 0
538, 4207

4745 >> [5, 1; 13, 1; 73, 1] >> 0
1487, 3258

4745 >> [5, 1; 13, 1; 73, 1] >> 0
1633, 3112

4745 >> [5, 1; 13, 1; 73, 1] >> 0
2163, 2582

4765 >> [5, 1; 953, 1] >> 0
442, 4323

4765 >> [5, 1; 953, 1] >> 0
2348, 2417

4777 >> [17, 1; 281, 1] >> 0
1177, 3600

4777 >> [17, 1; 281, 1] >> 0
1458, 3319

4789 >> Mat([4789, 1]) >> 1
1481, 3308

4793 >> Mat([4793, 1]) >> 1
1480, 3313

4801 >> Mat([4801, 1]) >> 1
1403, 3398

4813 >> Mat([4813, 1]) >> 1
1868, 2945

4817 >> Mat([4817, 1]) >> 1
1291, 3526

4825 >> [5, 2; 193, 1] >> 0
1432, 3393

4825 >> [5, 2; 193, 1] >> 0
1818, 3007

4849 >> [13, 1; 373, 1] >> 0
642, 4207

4849 >> [13, 1; 373, 1] >> 0
850, 3999

4861 >> Mat([4861, 1]) >> 1
493, 4368

4877 >> Mat([4877, 1]) >> 1
719, 4158

4885 >> [5, 1; 977, 1] >> 0
252, 4633

4885 >> [5, 1; 977, 1] >> 0
1702, 3183

4889 >> Mat([4889, 1]) >> 1
730, 4159

4901 >> [13, 2; 29, 1] >> 0
70, 4831

4901 >> [13, 2; 29, 1] >> 0
99, 4802

4909 >> Mat([4909, 1]) >> 1
1613, 3296

4913 >> Mat([17, 3]) >> 0
1985, 2928

4925 >> [5, 2; 197, 1] >> 0
1168, 3757

4925 >> [5, 2; 197, 1] >> 0
1393, 3532

4933 >> Mat([4933, 1]) >> 1
1194, 3739

4937 >> Mat([4937, 1]) >> 1
849, 4088

4957 >> Mat([4957, 1]) >> 1
359, 4598

4969 >> Mat([4969, 1]) >> 1
1076, 3893

4973 >> Mat([4973, 1]) >> 1
223, 4750

4981 >> [17, 1; 293, 1] >> 0
2189, 2792

4981 >> [17, 1; 293, 1] >> 0
2206, 2775

4985 >> [5, 1; 997, 1] >> 0
1158, 3827

4985 >> [5, 1; 997, 1] >> 0
1833, 3152

4993 >> Mat([4993, 1]) >> 1
158, 4835

5009 >> Mat([5009, 1]) >> 1
539, 4470

5017 >> [29, 1; 173, 1] >> 0
945, 4072

5017 >> [29, 1; 173, 1] >> 0
1810, 3207

5021 >> Mat([5021, 1]) >> 1
1363, 3658

5045 >> [5, 1; 1009, 1] >> 0
1478, 3567

5045 >> [5, 1; 1009, 1] >> 0
2487, 2558

5057 >> [13, 1; 389, 1] >> 0
1282, 3775

5057 >> [13, 1; 389, 1] >> 0
2449, 2608

5065 >> [5, 1; 1013, 1] >> 0
968, 4097

5065 >> [5, 1; 1013, 1] >> 0
1058, 4007

5069 >> [37, 1; 137, 1] >> 0
1881, 3188

5069 >> [37, 1; 137, 1] >> 0
1955, 3114

5077 >> Mat([5077, 1]) >> 1
858, 4219

5081 >> Mat([5081, 1]) >> 1
2412, 2669

5101 >> Mat([5101, 1]) >> 1
101, 5000

5105 >> [5, 1; 1021, 1] >> 0
647, 4458

5105 >> [5, 1; 1021, 1] >> 0
1668, 3437

5113 >> Mat([5113, 1]) >> 1
2025, 3088

5125 >> [5, 3; 41, 1] >> 0
1057, 4068

5125 >> [5, 3; 41, 1] >> 0
2182, 2943

5141 >> [53, 1; 97, 1] >> 0
507, 4634

5141 >> [53, 1; 97, 1] >> 0
560, 4581

5153 >> Mat([5153, 1]) >> 1
227, 4926

5161 >> [13, 1; 397, 1] >> 0
460, 4701

5161 >> [13, 1; 397, 1] >> 0
2319, 2842

5165 >> [5, 1; 1033, 1] >> 0
678, 4487

5165 >> [5, 1; 1033, 1] >> 0
1388, 3777

5185 >> [5, 1; 17, 1; 61, 1] >> 0
72, 5113

5185 >> [5, 1; 17, 1; 61, 1] >> 0
438, 4747

5185 >> [5, 1; 17, 1; 61, 1] >> 0
2002, 3183

5185 >> [5, 1; 17, 1; 61, 1] >> 0
2512, 2673

5189 >> Mat([5189, 1]) >> 1
2446, 2743

5197 >> Mat([5197, 1]) >> 1
1969, 3228

5209 >> Mat([5209, 1]) >> 1
2098, 3111

5213 >> [13, 1; 401, 1] >> 0
421, 4792

5213 >> [13, 1; 401, 1] >> 0
2426, 2787

5233 >> Mat([5233, 1]) >> 1
2253, 2980

5237 >> Mat([5237, 1]) >> 1
369, 4868

5245 >> [5, 1; 1049, 1] >> 0
623, 4622

5245 >> [5, 1; 1049, 1] >> 0
1672, 3573

5249 >> [29, 1; 181, 1] >> 0
162, 5087

5249 >> [29, 1; 181, 1] >> 0
1467, 3782

5261 >> Mat([5261, 1]) >> 1
827, 4434

5273 >> Mat([5273, 1]) >> 1
944, 4329

5281 >> Mat([5281, 1]) >> 1
1673, 3608

5297 >> Mat([5297, 1]) >> 1
2313, 2984

5305 >> [5, 1; 1061, 1] >> 0
103, 5202

5305 >> [5, 1; 1061, 1] >> 0
958, 4347

5309 >> Mat([5309, 1]) >> 1
1804, 3505

5317 >> [13, 1; 409, 1] >> 0
1084, 4233

5317 >> [13, 1; 409, 1] >> 0
1370, 3947

5321 >> [17, 1; 313, 1] >> 0
914, 4407

5321 >> [17, 1; 313, 1] >> 0
2529, 2792

5329 >> Mat([73, 2]) >> 0
776, 4553

5333 >> Mat([5333, 1]) >> 1
2630, 2703

5345 >> [5, 1; 1069, 1] >> 0
1318, 4027

5345 >> [5, 1; 1069, 1] >> 0
2387, 2958

5353 >> [53, 1; 101, 1] >> 0
394, 4959

5353 >> [53, 1; 101, 1] >> 0
818, 4535

5365 >> [5, 1; 29, 1; 37, 1] >> 0
302, 5063

5365 >> [5, 1; 29, 1; 37, 1] >> 0
882, 4483

5365 >> [5, 1; 29, 1; 37, 1] >> 0
2337, 3028

5365 >> [5, 1; 29, 1; 37, 1] >> 0
2448, 2917

5381 >> Mat([5381, 1]) >> 1
1739, 3642

5389 >> [17, 1; 317, 1] >> 0
837, 4552

5389 >> [17, 1; 317, 1] >> 0
2333, 3056

5393 >> Mat([5393, 1]) >> 1
665, 4728

5413 >> Mat([5413, 1]) >> 1
429, 4984

5417 >> Mat([5417, 1]) >> 1
368, 5049

5429 >> [61, 1; 89, 1] >> 0
233, 5196

5429 >> [61, 1; 89, 1] >> 0
1636, 3793

5437 >> Mat([5437, 1]) >> 1
630, 4807

5441 >> Mat([5441, 1]) >> 1
2452, 2989

5449 >> Mat([5449, 1]) >> 1
635, 4814

5465 >> [5, 1; 1093, 1] >> 0
563, 4902

5465 >> [5, 1; 1093, 1] >> 0
1623, 3842

5473 >> [13, 1; 421, 1] >> 0
450, 5023

5473 >> [13, 1; 421, 1] >> 0
1292, 4181

5477 >> Mat([5477, 1]) >> 1
74, 5403

5485 >> [5, 1; 1097, 1] >> 0
1438, 4047

5485 >> [5, 1; 1097, 1] >> 0
1853, 3632

5501 >> Mat([5501, 1]) >> 1
1115, 4386

5513 >> [37, 1; 149, 1] >> 0
105, 5408

5513 >> [37, 1; 149, 1] >> 0
1893, 3620

5521 >> Mat([5521, 1]) >> 1
765, 4756

5525 >> [5, 2; 13, 1; 17, 1] >> 0
268, 5257

5525 >> [5, 2; 13, 1; 17, 1] >> 0
1568, 3957

5525 >> [5, 2; 13, 1; 17, 1] >> 0
1968, 3557

5525 >> [5, 2; 13, 1; 17, 1] >> 0
2257, 3268

5545 >> [5, 1; 1109, 1] >> 0
1463, 4082

5545 >> [5, 1; 1109, 1] >> 0
2572, 2973

5557 >> Mat([5557, 1]) >> 1
2478, 3079

5569 >> Mat([5569, 1]) >> 1
973, 4596

5573 >> Mat([5573, 1]) >> 1
2017, 3556

5581 >> Mat([5581, 1]) >> 1
1437, 4144

5585 >> [5, 1; 1117, 1] >> 0
903, 4682

5585 >> [5, 1; 1117, 1] >> 0
2448, 3137

5597 >> [29, 1; 193, 1] >> 0
853, 4744

5597 >> [29, 1; 193, 1] >> 0
2042, 3555

5617 >> [41, 1; 137, 1] >> 0
237, 5380

5617 >> [41, 1; 137, 1] >> 0
2018, 3599

5629 >> [13, 1; 433, 1] >> 0
1045, 4584

5629 >> [13, 1; 433, 1] >> 0
2777, 2852

5641 >> Mat([5641, 1]) >> 1
1429, 4212

5645 >> [5, 1; 1129, 1] >> 0
168, 5477

5645 >> [5, 1; 1129, 1] >> 0
1297, 4348

5653 >> Mat([5653, 1]) >> 1
310, 5343

5657 >> Mat([5657, 1]) >> 1
1670, 3987

5669 >> Mat([5669, 1]) >> 1
1046, 4623

5689 >> Mat([5689, 1]) >> 1
2124, 3565

5693 >> Mat([5693, 1]) >> 1
1193, 4500

5701 >> Mat([5701, 1]) >> 1
385, 5316

5713 >> [29, 1; 197, 1] >> 0
1984, 3729

5713 >> [29, 1; 197, 1] >> 0
2772, 2941

5717 >> Mat([5717, 1]) >> 1
2416, 3301

5725 >> [5, 2; 229, 1] >> 0
107, 5618

5725 >> [5, 2; 229, 1] >> 0
2168, 3557

5729 >> [17, 1; 337, 1] >> 0
863, 4866

5729 >> [17, 1; 337, 1] >> 0
1874, 3855

5737 >> Mat([5737, 1]) >> 1
1126, 4611

5741 >> Mat([5741, 1]) >> 1
2378, 3363

5749 >> Mat([5749, 1]) >> 1
806, 4943

5765 >> [5, 1; 1153, 1] >> 0
1013, 4752

5765 >> [5, 1; 1153, 1] >> 0
1293, 4472

5777 >> [53, 1; 109, 1] >> 0
76, 5701

5777 >> [53, 1; 109, 1] >> 0
2256, 3521

5785 >> [5, 1; 13, 1; 89, 1] >> 0
1123, 4662

5785 >> [5, 1; 13, 1; 89, 1] >> 0
1568, 4217

5785 >> [5, 1; 13, 1; 89, 1] >> 0
1903, 3882

5785 >> [5, 1; 13, 1; 89, 1] >> 0
2348, 3437

5801 >> Mat([5801, 1]) >> 1
1145, 4656

5809 >> [37, 1; 157, 1] >> 0
1856, 3953

5809 >> [37, 1; 157, 1] >> 0
2226, 3583

5813 >> Mat([5813, 1]) >> 1
796, 5017

5821 >> Mat([5821, 1]) >> 1
1242, 4579

5825 >> [5, 2; 233, 1] >> 0
843, 4982

5825 >> [5, 2; 233, 1] >> 0
2707, 3118

5837 >> [13, 1; 449, 1] >> 0
382, 5455

5837 >> [13, 1; 449, 1] >> 0
2761, 3076

5849 >> Mat([5849, 1]) >> 1
2839, 3010

5857 >> Mat([5857, 1]) >> 1
1310, 4547

5861 >> Mat([5861, 1]) >> 1
754, 5107

5869 >> Mat([5869, 1]) >> 1
1042, 4827

5881 >> Mat([5881, 1]) >> 1
1098, 4783

5897 >> Mat([5897, 1]) >> 1
543, 5354

5905 >> [5, 1; 1181, 1] >> 0
243, 5662

5905 >> [5, 1; 1181, 1] >> 0
938, 4967

5917 >> [61, 1; 97, 1] >> 0
172, 5745

5917 >> [61, 1; 97, 1] >> 0
560, 5357

5933 >> [17, 1; 349, 1] >> 0
2656, 3277

5933 >> [17, 1; 349, 1] >> 0
2928, 3005

5941 >> [13, 1; 457, 1] >> 0
109, 5832

5941 >> [13, 1; 457, 1] >> 0
2176, 3765

5945 >> [5, 1; 29, 1; 41, 1] >> 0
278, 5667

5945 >> [5, 1; 29, 1; 41, 1] >> 0
1467, 4478

5945 >> [5, 1; 29, 1; 41, 1] >> 0
2018, 3927

5945 >> [5, 1; 29, 1; 41, 1] >> 0
2738, 3207

5953 >> Mat([5953, 1]) >> 1
2403, 3550

5965 >> [5, 1; 1193, 1] >> 0
1007, 4958

5965 >> [5, 1; 1193, 1] >> 0
2572, 3393

5981 >> Mat([5981, 1]) >> 1
1317, 4664

5989 >> [53, 1; 113, 1] >> 0
1454, 4535

5989 >> [53, 1; 113, 1] >> 0
1567, 4422

5993 >> [13, 1; 461, 1] >> 0
970, 5023

5993 >> [13, 1; 461, 1] >> 0
2257, 3736

6001 >> [17, 1; 353, 1] >> 0
395, 5606

6001 >> [17, 1; 353, 1] >> 0
1101, 4900

6005 >> [5, 1; 1201, 1] >> 0
1152, 4853

6005 >> [5, 1; 1201, 1] >> 0
2353, 3652

6025 >> [5, 2; 241, 1] >> 0
418, 5607

6025 >> [5, 2; 241, 1] >> 0
1382, 4643

6029 >> Mat([6029, 1]) >> 1
1801, 4228

6037 >> Mat([6037, 1]) >> 1
2652, 3385

6053 >> Mat([6053, 1]) >> 1
2832, 3221

6065 >> [5, 1; 1213, 1] >> 0
718, 5347

6065 >> [5, 1; 1213, 1] >> 0
1708, 4357

6073 >> Mat([6073, 1]) >> 1
2524, 3549

6085 >> [5, 1; 1217, 1] >> 0
78, 6007

6085 >> [5, 1; 1217, 1] >> 0
2512, 3573

6089 >> Mat([6089, 1]) >> 1
455, 5634

6101 >> Mat([6101, 1]) >> 1
247, 5854

6109 >> [41, 1; 149, 1] >> 0
1385, 4724

6109 >> [41, 1; 149, 1] >> 0
2428, 3681

6113 >> Mat([6113, 1]) >> 1
1089, 5024

6121 >> Mat([6121, 1]) >> 1
2583, 3538

6133 >> Mat([6133, 1]) >> 1
865, 5268

6145 >> [5, 1; 1229, 1] >> 0
597, 5548

6145 >> [5, 1; 1229, 1] >> 0
632, 5513

6161 >> [61, 1; 101, 1] >> 0
111, 6050

6161 >> [61, 1; 101, 1] >> 0
2939, 3222

6173 >> Mat([6173, 1]) >> 1
2447, 3726

6185 >> [5, 1; 1237, 1] >> 0
1783, 4402

6185 >> [5, 1; 1237, 1] >> 0
1928, 4257

6197 >> Mat([6197, 1]) >> 1
2007, 4190

6205 >> [5, 1; 17, 1; 73, 1] >> 0
557, 5648

6205 >> [5, 1; 17, 1; 73, 1] >> 0
922, 5283

6205 >> [5, 1; 17, 1; 73, 1] >> 0
1798, 4407

6205 >> [5, 1; 17, 1; 73, 1] >> 0
2163, 4042

6217 >> Mat([6217, 1]) >> 1
2372, 3845

6221 >> Mat([6221, 1]) >> 1
1121, 5100

6229 >> Mat([6229, 1]) >> 1
1451, 4778

6245 >> [5, 1; 1249, 1] >> 0
1913, 4332

6245 >> [5, 1; 1249, 1] >> 0
3083, 3162

6253 >> [13, 2; 37, 1] >> 0
746, 5507

6253 >> [13, 2; 37, 1] >> 0
2436, 3817

6257 >> Mat([6257, 1]) >> 1
1584, 4673

6269 >> Mat([6269, 1]) >> 1
1523, 4746

6277 >> Mat([6277, 1]) >> 1
1033, 5244

6301 >> Mat([6301, 1]) >> 1
2184, 4117

6305 >> [5, 1; 13, 1; 97, 1] >> 0
463, 5842

6305 >> [5, 1; 13, 1; 97, 1] >> 0
798, 5507

6305 >> [5, 1; 13, 1; 97, 1] >> 0
1477, 4828

6305 >> [5, 1; 13, 1; 97, 1] >> 0
2738, 3567

6317 >> Mat([6317, 1]) >> 1
1963, 4354

6329 >> Mat([6329, 1]) >> 1
2219, 4110

6337 >> Mat([6337, 1]) >> 1
178, 6159

6341 >> [17, 1; 373, 1] >> 0
642, 5699

6341 >> [17, 1; 373, 1] >> 0
2342, 3999

6353 >> Mat([6353, 1]) >> 1
1392, 4961

6361 >> Mat([6361, 1]) >> 1
1751, 4610

6373 >> Mat([6373, 1]) >> 1
1879, 4494

6385 >> [5, 1; 1277, 1] >> 0
113, 6272

6385 >> [5, 1; 1277, 1] >> 0
2667, 3718

6389 >> Mat([6389, 1]) >> 1
2092, 4297

6397 >> Mat([6397, 1]) >> 1
1302, 5095

6401 >> [37, 1; 173, 1] >> 0
80, 6321

6401 >> [37, 1; 173, 1] >> 0
253, 6148

6409 >> [13, 1; 17, 1; 29, 1] >> 0
684, 5725

6409 >> [13, 1; 17, 1; 29, 1] >> 0
1815, 4594

6409 >> [13, 1; 17, 1; 29, 1] >> 0
2163, 4246

6409 >> [13, 1; 17, 1; 29, 1] >> 0
3115, 3294

6421 >> Mat([6421, 1]) >> 1
825, 5596

6425 >> [5, 2; 257, 1] >> 0
2843, 3582

6425 >> [5, 2; 257, 1] >> 0
3068, 3357

6437 >> [41, 1; 157, 1] >> 0
1385, 5052

6437 >> [41, 1; 157, 1] >> 0
2697, 3740

6445 >> [5, 1; 1289, 1] >> 0
1768, 4677

6445 >> [5, 1; 1289, 1] >> 0
3057, 3388

6449 >> Mat([6449, 1]) >> 1
1854, 4595

6469 >> Mat([6469, 1]) >> 1
2977, 3492

6473 >> Mat([6473, 1]) >> 1
1808, 4665

6481 >> Mat([6481, 1]) >> 1
729, 5752

6485 >> [5, 1; 1297, 1] >> 0
1333, 5152

6485 >> [5, 1; 1297, 1] >> 0
2558, 3927

6497 >> [73, 1; 89, 1] >> 0
411, 6086

6497 >> [73, 1; 89, 1] >> 0
1725, 4772

6505 >> [5, 1; 1301, 1] >> 0
1352, 5153

6505 >> [5, 1; 1301, 1] >> 0
2653, 3852

6521 >> Mat([6521, 1]) >> 1
2364, 4157

6529 >> Mat([6529, 1]) >> 1
2311, 4218

6553 >> Mat([6553, 1]) >> 1
3186, 3367

6565 >> [5, 1; 13, 1; 101, 1] >> 0
697, 5868

6565 >> [5, 1; 13, 1; 101, 1] >> 0
798, 5767

6565 >> [5, 1; 13, 1; 101, 1] >> 0
1828, 4737

6565 >> [5, 1; 13, 1; 101, 1] >> 0
3242, 3323

6569 >> Mat([6569, 1]) >> 1
3038, 3531

6577 >> Mat([6577, 1]) >> 1
1624, 4953

6581 >> Mat([6581, 1]) >> 1
2727, 3854

6605 >> [5, 1; 1321, 1] >> 0
257, 6348

6605 >> [5, 1; 1321, 1] >> 0
1578, 5027

6613 >> [17, 1; 389, 1] >> 0
115, 6498

6613 >> [17, 1; 389, 1] >> 0
1441, 5172

6617 >> [13, 1; 509, 1] >> 0
1828, 4789

6617 >> [13, 1; 509, 1] >> 0
2244, 4373

6625 >> [5, 3; 53, 1] >> 0
182, 6443

6625 >> [5, 3; 53, 1] >> 0
818, 5807

6637 >> Mat([6637, 1]) >> 1
2828, 3809

6641 >> [29, 1; 229, 1] >> 0
336, 6305

6641 >> [29, 1; 229, 1] >> 0
1496, 5145

6649 >> [61, 1; 109, 1] >> 0
294, 6355

6649 >> [61, 1; 109, 1] >> 0
621, 6028

6653 >> Mat([6653, 1]) >> 1
752, 5901

6661 >> Mat([6661, 1]) >> 1
658, 6003

6673 >> Mat([6673, 1]) >> 1
2437, 4236

6689 >> Mat([6689, 1]) >> 1
2759, 3930

6697 >> [37, 1; 181, 1] >> 0
524, 6173

6697 >> [37, 1; 181, 1] >> 0
1067, 5630

6701 >> Mat([6701, 1]) >> 1
1721, 4980

6709 >> Mat([6709, 1]) >> 1
2150, 4559

6725 >> [5, 2; 269, 1] >> 0
82, 6643

6725 >> [5, 2; 269, 1] >> 0
1532, 5193

6733 >> Mat([6733, 1]) >> 1
2217, 4516

6737 >> Mat([6737, 1]) >> 1
2393, 4344

6749 >> [17, 1; 397, 1] >> 0
1254, 5495

6749 >> [17, 1; 397, 1] >> 0
2716, 4033

6757 >> [29, 1; 233, 1] >> 0
2419, 4338

6757 >> [29, 1; 233, 1] >> 0
3173, 3584

6761 >> Mat([6761, 1]) >> 1
1775, 4986

6773 >> [13, 1; 521, 1] >> 0
2319, 4454

6773 >> [13, 1; 521, 1] >> 0
2891, 3882

6781 >> Mat([6781, 1]) >> 1
995, 5786

6793 >> Mat([6793, 1]) >> 1
709, 6084

6805 >> [5, 1; 1361, 1] >> 0
747, 6058

6805 >> [5, 1; 1361, 1] >> 0
2108, 4697

6817 >> [17, 1; 401, 1] >> 0
421, 6396

6817 >> [17, 1; 401, 1] >> 0
1985, 4832

6829 >> Mat([6829, 1]) >> 1
1596, 5233

6833 >> Mat([6833, 1]) >> 1
1307, 5526

6841 >> Mat([6841, 1]) >> 1
1625, 5216

6845 >> [5, 1; 37, 2] >> 0
117, 6728

6845 >> [5, 1; 37, 2] >> 0
1252, 5593

6857 >> Mat([6857, 1]) >> 1
Exercise for the readers from the previous centuries:
Come up with a routine to generate n's with complete set of known (a, b) pairs to determine if they have only-one or more prime factors.

Last fiddled with by a1call on 2021-01-12 at 05:27
a1call is offline   Reply With Quote