View Single Post
Old 2020-07-08, 17:58   #871
sweety439
 
sweety439's Avatar
 
Nov 2016

2·7·132 Posts
Default

Quote:
Originally Posted by sweety439 View Post
In Riesel conjectures, if k=m^2 and m and b satisfy at least one of these conditions, then this k should be excluded from the Riesel base b problem, since it has algebraic factors for even n and it has a single prime factor for odd n, thus proven composite by partial algebraic factors

list all such mod <= 2048

Code:
m                   b
= 2 or 3 mod 5      = 4 mod 5
= 5 or 8 mod 13      = 12 mod 13
= 3 or 5 mod 8      = 9 mod 16
= 4 or 13 mod 17      = 16 mod 17
= 12 or 17 mod 29      = 28 mod 29
= 7 or 9 mod 16      = 17 mod 32
= 6 or 31 mod 37      = 36 mod 37
= 9 or 32 mod 41      = 40 mod 41
= 23 or 30 mod 53      = 52 mod 53
= 11 or 50 mod 61      = 60 mod 61
= 15 or 17 mod 32      = 33 mod 64
= 27 or 46 mod 73      = 72 mod 73
= 34 or 55 mod 89      = 88 mod 89
= 22 or 75 mod 97      = 96 mod 97
= 10 or 91 mod 101      = 100 mod 101
= 33 or 76 mod 109      = 108 mod 109
= 15 or 98 mod 113      = 112 mod 113
= 31 or 33 mod 64      = 65 mod 128
= 37 or 100 mod 137      = 136 mod 137
= 44 or 105 mod 149      = 148 mod 149
= 28 or 129 mod 157      = 156 mod 157
= 80 or 93 mod 173      = 172 mod 173
= 19 or 162 mod 181      = 180 mod 181
= 81 or 112 mod 193      = 192 mod 193
= 14 or 183 mod 197      = 196 mod 197
= 107 or 122 mod 229      = 228 mod 229
= 89 or 144 mod 233      = 232 mod 233
= 64 or 177 mod 241      = 240 mod 241
= 63 or 65 mod 128      = 129 mod 256
= 16 or 241 mod 257      = 256 mod 257
= 82 or 187 mod 269      = 268 mod 269
= 60 or 217 mod 277      = 276 mod 277
= 53 or 228 mod 281      = 280 mod 281
= 138 or 155 mod 293      = 292 mod 293
= 25 or 288 mod 313      = 312 mod 313
= 114 or 203 mod 317      = 316 mod 317
= 148 or 189 mod 337      = 336 mod 337
= 136 or 213 mod 349      = 348 mod 349
= 42 or 311 mod 353      = 352 mod 353
= 104 or 269 mod 373      = 372 mod 373
= 115 or 274 mod 389      = 388 mod 389
= 63 or 334 mod 397      = 396 mod 397
= 20 or 381 mod 401      = 400 mod 401
= 143 or 266 mod 409      = 408 mod 409
= 29 or 392 mod 421      = 420 mod 421
= 179 or 254 mod 433      = 432 mod 433
= 67 or 382 mod 449      = 448 mod 449
= 109 or 348 mod 457      = 456 mod 457
= 48 or 413 mod 461      = 460 mod 461
= 208 or 301 mod 509      = 508 mod 509
= 127 or 129 mod 256      = 257 mod 512
= 235 or 286 mod 521      = 520 mod 521
= 52 or 489 mod 541      = 540 mod 541
= 118 or 439 mod 557      = 556 mod 557
= 86 or 483 mod 569      = 568 mod 569
= 24 or 553 mod 577      = 576 mod 577
= 77 or 516 mod 593      = 592 mod 593
= 125 or 476 mod 601      = 600 mod 601
= 35 or 578 mod 613      = 612 mod 613
= 194 or 423 mod 617      = 616 mod 617
= 154 or 487 mod 641      = 640 mod 641
= 149 or 504 mod 653      = 652 mod 653
= 106 or 555 mod 661      = 660 mod 661
= 58 or 615 mod 673      = 672 mod 673
= 26 or 651 mod 677      = 676 mod 677
= 135 or 566 mod 701      = 700 mod 701
= 96 or 613 mod 709      = 708 mod 709
= 353 or 380 mod 733      = 732 mod 733
= 87 or 670 mod 757      = 756 mod 757
= 39 or 722 mod 761      = 760 mod 761
= 62 or 707 mod 769      = 768 mod 769
= 317 or 456 mod 773      = 772 mod 773
= 215 or 582 mod 797      = 796 mod 797
= 318 or 491 mod 809      = 808 mod 809
= 295 or 526 mod 821      = 820 mod 821
= 246 or 583 mod 829      = 828 mod 829
= 333 or 520 mod 853      = 852 mod 853
= 207 or 650 mod 857      = 856 mod 857
= 151 or 726 mod 877      = 876 mod 877
= 387 or 494 mod 881      = 880 mod 881
= 324 or 605 mod 929      = 928 mod 929
= 196 or 741 mod 937      = 936 mod 937
= 97 or 844 mod 941      = 940 mod 941
= 442 or 511 mod 953      = 952 mod 953
= 252 or 725 mod 977      = 976 mod 977
= 161 or 836 mod 997      = 996 mod 997
= 469 or 540 mod 1009      = 1008 mod 1009
= 45 or 968 mod 1013      = 1012 mod 1013
= 374 or 647 mod 1021      = 1020 mod 1021
= 255 or 257 mod 512      = 513 mod 1024
= 355 or 678 mod 1033      = 1032 mod 1033
= 426 or 623 mod 1049      = 1048 mod 1049
= 103 or 958 mod 1061      = 1060 mod 1061
= 249 or 820 mod 1069      = 1068 mod 1069
= 530 or 563 mod 1093      = 1092 mod 1093
= 341 or 756 mod 1097      = 1096 mod 1097
= 354 or 755 mod 1109      = 1108 mod 1109
= 214 or 903 mod 1117      = 1116 mod 1117
= 168 or 961 mod 1129      = 1128 mod 1129
= 140 or 1013 mod 1153      = 1152 mod 1153
= 243 or 938 mod 1181      = 1180 mod 1181
= 186 or 1007 mod 1193      = 1192 mod 1193
= 49 or 1152 mod 1201      = 1200 mod 1201
= 495 or 718 mod 1213      = 1212 mod 1213
= 78 or 1139 mod 1217      = 1216 mod 1217
= 597 or 632 mod 1229      = 1228 mod 1229
= 546 or 691 mod 1237      = 1236 mod 1237
= 585 or 664 mod 1249      = 1248 mod 1249
= 113 or 1164 mod 1277      = 1276 mod 1277
= 479 or 810 mod 1289      = 1288 mod 1289
= 36 or 1261 mod 1297      = 1296 mod 1297
= 51 or 1250 mod 1301      = 1300 mod 1301
= 257 or 1064 mod 1321      = 1320 mod 1321
= 614 or 747 mod 1361      = 1360 mod 1361
= 668 or 705 mod 1373      = 1372 mod 1373
= 366 or 1015 mod 1381      = 1380 mod 1381
= 452 or 957 mod 1409      = 1408 mod 1409
= 620 or 809 mod 1429      = 1428 mod 1429
= 542 or 891 mod 1433      = 1432 mod 1433
= 497 or 956 mod 1453      = 1452 mod 1453
= 465 or 1016 mod 1481      = 1480 mod 1481
= 225 or 1264 mod 1489      = 1488 mod 1489
= 432 or 1061 mod 1493      = 1492 mod 1493
= 88 or 1461 mod 1549      = 1548 mod 1549
= 339 or 1214 mod 1553      = 1552 mod 1553
= 610 or 987 mod 1597      = 1596 mod 1597
= 40 or 1561 mod 1601      = 1600 mod 1601
= 523 or 1086 mod 1609      = 1608 mod 1609
= 127 or 1486 mod 1613      = 1612 mod 1613
= 166 or 1455 mod 1621      = 1620 mod 1621
= 316 or 1321 mod 1637      = 1636 mod 1637
= 783 or 874 mod 1657      = 1656 mod 1657
= 220 or 1449 mod 1669      = 1668 mod 1669
= 92 or 1601 mod 1693      = 1692 mod 1693
= 414 or 1283 mod 1697      = 1696 mod 1697
= 390 or 1319 mod 1709      = 1708 mod 1709
= 473 or 1248 mod 1721      = 1720 mod 1721
= 410 or 1323 mod 1733      = 1732 mod 1733
= 59 or 1682 mod 1741      = 1740 mod 1741
= 713 or 1040 mod 1753      = 1752 mod 1753
= 775 or 1002 mod 1777      = 1776 mod 1777
= 724 or 1065 mod 1789      = 1788 mod 1789
= 824 or 977 mod 1801      = 1800 mod 1801
= 61 or 1800 mod 1861      = 1860 mod 1861
= 737 or 1136 mod 1873      = 1872 mod 1873
= 137 or 1740 mod 1877      = 1876 mod 1877
= 331 or 1558 mod 1889      = 1888 mod 1889
= 218 or 1683 mod 1901      = 1900 mod 1901
= 712 or 1201 mod 1913      = 1912 mod 1913
= 598 or 1335 mod 1933      = 1932 mod 1933
= 589 or 1360 mod 1949      = 1948 mod 1949
= 259 or 1714 mod 1973      = 1972 mod 1973
= 834 or 1159 mod 1993      = 1992 mod 1993
= 412 or 1585 mod 1997      = 1996 mod 1997
= 229 or 1788 mod 2017      = 2016 mod 2017
= 992 or 1037 mod 2029      = 2028 mod 2029
= 511 or 513 mod 1024      = 1025 mod 2048
There are other k's excluded from the Riesel/Sierpinski problems (Riesel is still much more such k's)

* R30 k=1369:

for even n let n=2*q; factors to: (37*30^q - 1) * (37*30^q + 1)

odd n: covering set 7, 13, 19

* R88 k=400:

for even n let n=2*q; factors to: (20*88^q - 1) * (20*88^q + 1)

odd n: covering set 3, 7, 13

* R95 k=324:

for even n let n=2*q; factors to: (18*95^q - 1) * (18*95^q + 1)

odd n: covering set 7, 13, 229

* R498 k=93025:

for even n let n=2*q; factors to: (305*498^q - 1) * (305*498^q + 1)

odd n: covering set 13, 67, 241

* R540 k=61009:

for even n let n=2*q; factors to: (247*540^q - 1) * (247*540^q + 1)

odd n: covering set 17, 1009

* S13 k=2500:

odd n: factor of 7

n = = 2 mod 4: factor of 17

n = = 0 mod 4: let n=4*q and let m=5*13^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

* S55 k=2500:

odd n: factor of 7

n = = 2 mod 4: factor of 17

n = = 0 mod 4: let n=4*q and let m=5*55^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

* S200 k=16:

odd n: factor of 3

n = = 0 mod 4: factor of 17

n = = 2 mod 4: let n=4*q+2 and let m = 20*200^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

* S1101 k=324:

odd n: factor of 19

n = = 2 mod 4: factor of 17

n = = 0 mod 4: let n=4*q and let m=3*1101^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

* S2070 k=324:

odd n: factor of 19

n = = 2 mod 4: factor of 17

n = = 0 mod 4: let n=4*q and let m=3*2070^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

* S225 k=114244:

for even n let k=4*q^4 and let m=q*15^(n/2); factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1)

odd n: factor of 113

* R10 k=343:

n = = 1 mod 3: factor of 3

n = = 2 mod 3: factor of 37

n = = 0 mod 3: let n=3*q and let m=7*10^q; factors to: (m - 1) * (m^2 + m + 1)

* R957 k=64:

n = = 1 mod 3: factor of 73

n = = 2 mod 3: factor of 19

n = = 0 mod 3: let n=3*q and let m=4*957^q; factors to: (m - 1) * (m^2 + m + 1)

* S63 k=3511808:

n = = 1 mod 3: factor of 37

n = = 2 mod 3: factor of 109

n = = 0 mod 3: let n=3*q and let m=152*63^q; factors to: (m + 1) * (m^2 - m + 1)

* S63 k=27000000:

n = = 1 mod 3: factor of 37

n = = 2 mod 3: factor of 109

n = = 0 mod 3: let n=3*q and let m=300*63^q; factors to: (m + 1) * (m^2 - m + 1)

* R936 k=64:

n = = 0 mod 2: let n=2*q; factors to: (8*936^q - 1) * (8*936^q + 1)

n = = 0 mod 3: let n=3*q; factors to: (4*936^q - 1) * [16*936^(2q) + 4*936^q + 1]

n = = 1 mod 6: factor of 37

n = = 5 mod 6: factor of 109

Last fiddled with by sweety439 on 2020-08-08 at 05:31
sweety439 is offline   Reply With Quote