View Single Post
 2022-03-14, 16:57 #31 chris2be8     Sep 2009 3·11·73 Posts QUEUED AS f76_145p1 (76^145+1)/171482389200252458221480442181043406423041840967916864047058380369596676506240427 from the extended Brent tables: Code: # Estimated SNFS difficulty 218., GNFS equivalent 174, GNFS difficulty 193, degree 4 n: 3046150488905565831531562421718467300562383421685525620521613449234769492260144747808730373648034224884794817288851696240404097298767359237433471606785946829571328371622265591710382731964910851 # 76^145+1^145, difficulty: 218.17, skewness: 1.00, alpha: 1.45 # cost: 6.616e+17, est. time: 315.05 GHz days (not accurate yet!) skew: 1.000 c4: 1 c3: -1 c2: 1 c1: -1 c0: 1 Y1: -1 Y0: 3496183156153757826996482351208459912924449087659442176 m: 3496183156153757826996482351208459912924449087659442176 type: snfs # msieve rating: skew 1.00, size 3.116e-22, alpha 1.694, combined = 2.902e-13 rroots = 0 skew: 1.00 rlim: 134000000 alim: 134000000 lpbr: 31 lpba: 30 mfbr: 62 mfba: 60 rlambda: 2.6 alambda: 2.6 ECMed to T50 + 4864 @ 11e7. Test sieving 10k ranges: Code:  Q yield 34M 23362 84M 29750 134M 31653 184M 30584 It's a 30/31 bit job so sieving from 34M to 106M on the rational side should generate about 200M relations (enough for a decent matrix and a little to spare). I'll do the LA. Last fiddled with by swellman on 2022-03-14 at 17:21