![]() |
Lepore Factorization nr.88
I've tried again
Lepore Factorization nr.88 [url]https://www.academia.edu/48848013/Lepore_Factorization_nr_88[/url] |
1 Attachment(s)
free copy
@CRGreathouse your number [url]https://mersenneforum.org/showthread.php?t=25929[/url] 390644893234047643 sqrt(390644893234047643/2)=441692991 -> 441692991 ; 441692989 ;441692987 ; 441692985 sqrt(390644893234047643) =625015914 -> 625015913 ; 625015911 ;625015909 ; 625015907 (390644893234047643-3)/8-Q-[4-(441692985-7)*(441692985-5)/8]=441692985*X (390644893234047643-3)/8-P-[4-(625015907-7)*(625015907-5)/8]=625015907*X Q=441692985*x+152029391 P=625015907*y+60099037 p*(q-625015907)/8=625015907*y+60099037 ,p*q=390644893234047643 p=625015921-8*y q*(p-441692985)/8=441692985*x+152029391,p*q=390644893234047643 q=884426299- 8*x Use LLL alghorithm to find one solution of m*(a1)*(a3)+n*(b1)*(b3) = N*t +T m*(a1)*(a4)-n*(b1)*(b4) = N*s + S m*(a2)*(a3)-n*(b2)*(b3) = N*w + W 64 < T <= 64 *j where j is integer > 1 0<S <= sqrt(N) 0<W <= sqrt(N) a1=441692985 , a2=152029391 ,a3=625015907 ,a4=60099037 b1=8 , b2=884426299 , b3=8 , b4=625015921 |
1 Attachment(s)
[QUOTE=Alberico Lepore;578056]I've tried again
Lepore Factorization nr.88 [url]https://www.academia.edu/48848013/Lepore_Factorization_nr_88[/url][/QUOTE] How to bypass the difficulty of factoring an RSA number I've tried again Lepore Factorization nr.88 |
1 Attachment(s)
[QUOTE=Alberico Lepore;578056]I've tried again
Lepore Factorization nr.88 [url]https://www.academia.edu/48848013/Lepore_Factorization_nr_88[/url][/QUOTE] I've tried again Lepore Factorization nr.88 another photo for my net-friends |
All times are UTC. The time now is 01:18. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.