![]() |
Right Perfect Prime Numbers
If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?
|
[QUOTE=Housemouse;134548]If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?[/QUOTE]
Clearly not. We don't even know whether the Mersenne primes are infinite in number. |
[QUOTE=Housemouse;134548]If P is an even perfect number greater than 6, P-1 is always composite divisible by nine. Is it known which perfect numbers are prime for P+1?[/QUOTE]
[URL="http://www.research.att.com/~njas/sequences/A061644"]http://www.research.att.com/~njas/sequences/A061644[/URL] |
yes
6 (7)
29 (29) 33550336 (33550337) are Prime 496 (497) 8128 (8129) 8589869056 (8589869057) are Composite That is as far as I checked |
I trialfactored P+1 for the 44 known perfect numbers P and did ECM on 1 of them:
[U]p: factor(s) of 2[sup]p-1[/sup]*(2[sup]p[/sup]-1) + 1[/U] 2: prime 3: prime 5: 7,71 7: 11,739 13: prime 17: 7,11,111556741 19: prime 31: 29,71,137,1621,5042777503 61: 2432582681,1092853292237112554142488617 89: 7 107: 7,11,67 127: 11,107,261697 521: 7,71 607: 11 1279: 72353441721527140856665601867 2203: 60449,1498429,711309659 2281: 197,557,1999,92033 3217: 11 4253: 7,53,8731,2353129,50820071 4423: 2163571 9689: 7,211,49922567 9941: 7,67,1605697,194147011 11213: 7 19937: 7,11,1129,168457 21701: 7 23209: 35603,620377 44497: 11,13259,16177141,896297147 86243: 7,29,301123,26072029 110503: 491,1493,1529761 132049: ? 216091: 4673,6920341 756839: 7 859433: 7 1257787: 11 1398269: 7,53,12713,17425081,199979189 2976221: 7,71 3021377: 7,11,49603 6972593: 7,6007,8392897,52193821 13466917: 11,45007 20996011: 1552147,114242767 24036583: 149 25964951: 7 30402457: 11 32582657: 7,11,67,34549,127541 So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*10[sup]9[/sup]. |
[QUOTE=ATH;134626]
So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*10[sup]9[/sup].[/QUOTE] Please note that if N=2^(p-1)*(2^p-1)+1 (where Mp=2^p-1 is a Mersenne prime), then the primefactorization of N-1 is known so a quick exact primetest is possible. |
[quote=ATH;134626]I trialfactored P+1 for the 44 known perfect numbers P and did ECM on 1 of them:
[U]p: factor(s) of 2[sup]p-1[/sup]*(2[sup]p[/sup]-1) + 1[/U] 2: prime 3: prime 5: 7,71 7: 11,739 13: prime 17: 7,11,111556741 19: prime 31: 29,71,137,1621,5042777503 61: 2432582681,1092853292237112554142488617 89: 7 107: 7,11,67 127: 11,107,261697 521: 7,71 607: 11 1279: 72353441721527140856665601867 2203: 60449,1498429,711309659 2281: 197,557,1999,92033 3217: 11 4253: 7,53,8731,2353129,50820071 4423: 2163571 9689: 7,211,49922567 9941: 7,67,1605697,194147011 11213: 7 19937: 7,11,1129,168457 21701: 7 23209: 35603,620377 44497: 11,13259,16177141,896297147 86243: 7,29,301123,26072029 110503: 491,1493,1529761 132049: ? 216091: 4673,6920341 756839: 7 859433: 7 1257787: 11 1398269: 7,53,12713,17425081,199979189 2976221: 7,71 3021377: 7,11,49603 6972593: 7,6007,8392897,52193821 13466917: 11,45007 20996011: 1552147,114242767 24036583: 149 25964951: 7 30402457: 11 32582657: 7,11,67,34549,127541 So perfectnumber+1 are prime for p=2,3,13 and 19 and unknown for p=132049 (79502 digits) which I trialfactored to 18*10[sup]9[/sup].[/quote] gmp-ecm doesnt think p=132049 is prp |
[QUOTE=henryzz;134683]gmp-ecm doesnt think p=132049 is prp[/QUOTE]
If you follow the link given at the site given by R. Gerbicz, [url]http://www.primepuzzles.net/puzzles/puzz_203.htm[/url] , you will see that PrimeForm agrees with gmp-ecm on this. |
Question solved.
I found a factor of 2[sup]p-1[/sup]*(2[sup]p[/sup]-1) + 1 for p=132049 with gmp-ecm: 194528547122653 So of the 44 known perfect numbers P=2[sup]p-1[/sup]*(2[sup]p[/sup]-1), P+1 is only prime for p=2,3,13 and 19. |
Updated list:
[CODE][B]p: factor(s) of 2[sup]p-1[/sup]*(2[sup]p[/sup]-1) + 1[/B] ------------------------------------------------------------------ 2: prime 3: prime 5: 7 , 71 7: 11 , 739 13: prime 17: 7 , 11 , 111556741 19: prime 31: 29 , 71 , 137 , 1621 , 5042777503 61: 2432582681 , 1092853292237112554142488617 89: 7 107: 7 , 11 , 67 127: 11 , 107 , 261697 521: 7 , 71 607: 11 1279: 72353441721527140856665601867 2203: 60449 , 1498429 , 711309659, 1418050069 2281: 197 , 557 , 1999 , 92033 3217: 11 4253: 7 , 53 , 8731 , 2353129 , 50820071 4423: 2163571 9689: 7 , 211 , 49922567 9941: 7 , 67 , 1605697 , 194147011 11213: 7 19937: 7 , 11 , 1129 , 168457 21701: 7 23209: 35603 , 620377 44497: 11 , 13259 , 16177141 , 896297147 86243: 7 , 29 , 301123 , 26072029 110503: 491 , 1493 , 1529761 132049: 194528547122653 216091: 4673 , 6920341 756839: 7 859433: 7 1257787: 11 1398269: 7 , 53 , 12713 , 17425081 , 199979189 2976221: 7 , 71 3021377: 7 , 11 , 49603 6972593: 7 , 6007 , 8392897 , 52193821 13466917: 11 , 45007 20996011: 1552147 , 114242767 24036583: 149 25964951: 7 30402457: 11 32582657: 7 , 11 , 67 , 34549 , 127541 37156667: 7 , 11 , 44753 , 202577 , 1282451377 42643801: 3593 , 7089208037 43112609: 7 , 211 , 70121 , 71647 , 1846524311 57885161: 7 , 22127627 74207281: No factor < 6*10[sup]12[/sup] 77232917: 7 , 11 , 11587 82589933: 7 , 67 , 599 , 7347113 , 14416229 [/CODE] So of the now 51 known perfect numbers P=2[sup]p-1[/sup]*(2[sup]p[/sup]-1), P+1 is only still prime for p=2,3,13 and 19, and status unknown for p=74207281. |
Can we extend this?
[B]p: factor(s) of 2p-1*(2p-1) + 1[/B] 57885161: [B]7[/B] 74207281: ? /JeppeSN |
All times are UTC. The time now is 12:36. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.