![]() |
Yes, the 21st prime with more than 1 million digits, and potentially the new largest Fermat (or Gen. Fermat) divisor because of a smal K:
7*2^3511774+1 (1057151 digits) I wonder why did he use an "x" prover's code, meaning a new search algorithm? |
I sse its now been corrected and changed to OpenPFGW.
|
[url=http://primes.utm.edu/primes/page.php?id=85789]5*2^2460482-1[/url]
|
My friend Benson strikes again.
5*2^3059698-1 [URL]http://primes.utm.edu/primes/page.php?id=85814[/URL] |
Another k=4, b=3 prime
4*3^416337-1 (198644 digits) :smile:
|
Another big [URL="http://primes.utm.edu/primes/page.php?id=85944"]prime[/URL] :tu:
|
[QUOTE=Cruelty;153404]Another big [URL="http://primes.utm.edu/primes/page.php?id=85944"]prime[/URL] :tu:[/QUOTE]
see the Constant-n Search page here [url]http://www.rieselprime.de/Data/Constant_n.htm[/url] |
[URL="http://primes.utm.edu/primes/page.php?id=85969"]1003*2^2076535-1[/URL]
|
My friend Benson strikes again.
5*2^3569154-1 [U][url]http://primes.utm.edu/primes/page.php?id=86152[/url][/U] |
he has had a lot of luck lately
|
4*3^423253-1 (201944 digits) :smile:
|
All times are UTC. The time now is 19:46. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.