mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Aliquot Sequences (https://www.mersenneforum.org/forumdisplay.php?f=90)
-   -   Index 1 Sequence Work for the "n^i" Aliquot Project (https://www.mersenneforum.org/showthread.php?t=28082)

 EdH 2022-09-17 14:09

Index 1 Sequence Work for the "n^i" Aliquot Project

This thread will list sequences which are open at index 1, of interest to the [URL="https://www.mersenneforum.org/showthread.php?t=23612"]Aliquot sequences that start on the integer powers n^i[/URL] thread. I will attempt to keep this list updated by removing those that have moved past index 1 and for any additional bases added to the tables.

[B]Note:[/B] All cofactors have had ECM to t45. All cofactors > 153 digits have had ECM to t50.

The original list contained 747 entries. The current list has 128:[code]
18^135: 170/164
26^116: 165/157
28^113: 164/157
34^104: 160/154
34^107: 164/161
39^106: 169/160
40^106: 170/150
40^107: 172/152
52^91: 157/151
55^94: 164/150
56^91: 160/153
56^98: 172/154
57^95: 167/161
57^100: 176/154
60^96: 172/163
60^100: 179/151
62^89: 160/154
62^92: 165/151
62^96: 173/158
63^97: 175/150
65^89: 161/155
65^98: 178/153
68^92: 169/161
68^97: 178/170
68^99: 182/157
70^89: 165/162 *
72^98: 183/178 *
74^90: 169/151
74^97: 182/169
74^98: 184/178
75^96: 180/153
76^85: 160/154 *
76^95: 179/173 *
77^89: 168/163
77^97: 183/175
78^91: 173/167 *
78^94: 179/171 *
78^97: 184/170 *
78^98: 186/184 *
78^99: 188/176 *
80^88: 168/151 *
80^92: 176/159 *
80^95: 181/152 *
84^89: 172/162 *
84^94: 182/178 *
84^100: 193/158 *
85^82: 158/154 *
86^80: 155/150 *
86^95: 184/178 *
86^99: 192/189 *
87^83: 161/153 *
87^96: 186/176 *
87^100: 194/173 *
88^95: 185/167
90^95: 187/163
91^91: 178/169
91^93: 182/153
91^95: 186/165
91^96: 188/163
91^97: 190/175
92^97: 191/182
92^99: 195/151
93^93: 183/162
93^99: 195/154
94^83: 164/157
94^84: 166/150
94^91: 180/172
94^92: 182/170
94^96: 190/167
94^97: 192/164
94^99: 196/164
95^90: 178/153
95^94: 186/186
95^96: 190/175
95^99: 196/180
96^86: 171/166
96^98: 195/170
98^98: 196/179
99^82: 164/153
99^86: 172/170
99^98: 196/178
99^99: 198/181
102^85: 172/165
102^92: 186/183
105^86: 174/174
105^90: 182/156
105^94: 191/162
119^80: 166/157
119^88: 183/166
119^94: 195/181
120^83: 174/163
120^85: 178/158
120^90: 188/166
120^91: 190/153
120^95: 198/182
162^85: 189/183
162^86: 191/156
162^87: 193/166
162^89: 197/167
162^90: 200/184
173^83: 184/162
193^83: 188/176
210^73: 171/150
220^80: 188/170
229^79: 185/181
231^67: 159/150
231^69: 164/160
231^76: 180/164
276^69: 169/157
284^69: 170/150
392^65: 169/166
396^62: 162/155
882^55: 163/156
882^59: 175/168
888^59: 175/159
888^60: 178/165
996^59: 178/164
1352^52: 163/154
14264^40: 167/159
31704^38: 172/171
31704^39: 176/153
47616^36: 169/162
1305184^30: 184/180
1727636^27: 169/155
6469693230^16: 158/156
6469693230^18: 178/166
8589869056^19: 189/162
8589869056^20: 199/168
[/code]An * means the sequence is reserved.

Here's a listing sorted solely by cofactor size:[code]
40^106: 170/150
55^94: 164/150
63^97: 175/150
86^80: 155/150 *
94^84: 166/150
210^73: 171/150
231^67: 159/150
284^69: 170/150
52^91: 157/151
60^100: 179/151
62^92: 165/151
74^90: 169/151
80^88: 168/151 *
92^99: 195/151
40^107: 172/152
80^95: 181/152 *
56^91: 160/153
65^98: 178/153
75^96: 180/153
87^83: 161/153 *
91^93: 182/153
95^90: 178/153
99^82: 164/153
120^91: 190/153
31704^39: 176/153
34^104: 160/154
56^98: 172/154
57^100: 176/154
62^89: 160/154
76^85: 160/154 *
85^82: 158/154 *
93^99: 195/154
1352^52: 163/154
65^89: 161/155
396^62: 162/155
1727636^27: 169/155
105^90: 182/156
162^86: 191/156
882^55: 163/156
6469693230^16: 158/156
26^116: 165/157
28^113: 164/157
68^99: 182/157
94^83: 164/157
119^80: 166/157
276^69: 169/157
62^96: 173/158
84^100: 193/158 *
120^85: 178/158
80^92: 176/159 *
888^59: 175/159
14264^40: 167/159
39^106: 169/160
231^69: 164/160
34^107: 164/161
57^95: 167/161
68^92: 169/161
70^89: 165/162 *
84^89: 172/162 *
93^93: 183/162
105^94: 191/162
173^83: 184/162
47616^36: 169/162
8589869056^19: 189/162
60^96: 172/163
77^89: 168/163
90^95: 187/163
91^96: 188/163
120^83: 174/163
18^135: 170/164
94^97: 192/164
94^99: 196/164
231^76: 180/164
996^59: 178/164
91^95: 186/165
102^85: 172/165
888^60: 178/165
96^86: 171/166
119^88: 183/166
120^90: 188/166
162^87: 193/166
392^65: 169/166
6469693230^18: 178/166
78^91: 173/167 *
88^95: 185/167
94^96: 190/167
162^89: 197/167
882^59: 175/168
8589869056^20: 199/168
74^97: 182/169
91^91: 178/169
68^97: 178/170
78^97: 184/170 *
94^92: 182/170
96^98: 195/170
99^86: 172/170
220^80: 188/170
78^94: 179/171 *
31704^38: 172/171
94^91: 180/172
76^95: 179/173 *
87^100: 194/173 *
105^86: 174/174
77^97: 183/175
91^97: 190/175
95^96: 190/175
78^99: 188/176 *
87^96: 186/176 *
193^83: 188/176
72^98: 183/178 *
74^98: 184/178
84^94: 182/178 *
86^95: 184/178 *
99^98: 196/178
98^98: 196/179
95^99: 196/180
1305184^30: 184/180
99^99: 198/181
119^94: 195/181
229^79: 185/181
92^97: 191/182
120^95: 198/182
102^92: 186/183
162^85: 189/183
78^98: 186/184 *
162^90: 200/184
95^94: 186/186
86^99: 192/189 *
[/code]

 kar_bon 2022-09-18 11:24

Here's a list of seqs where only index 1 exists unfactored (not all current bases included, I got not all data of them right now) sorted by digit-length of unfactored part.

[code]
base n digits last unfacored part
34 105 161 110 2 * 5^3 * 24337 * 271501 * 26924428544021<14> * 92008502963553099400264483<26> * 1755843760...13<110>
120 63 132 115 2^13 * 3^2 * 5 * 61 * 34157 * 225601 * 1545247900...69<115>
24 97 135 115 2^2 * 3 * 29 * 199757004571921649<18> * 2184938316...53<115>
120 59 124 117 2^5 * 3^3 * 5^2 * 89 * 6717109883...47<117>
40 93 150 121 2 * 5^2 * 330976988302517290350862631<27> * 8890018165...01<121>
33 102 155 123 2^5 * 5 * 7 * 17 * 103 * 2371 * 408263 * 117101917 * 555782489 * 4069027405...63<123>
34 103 158 124 2^3 * 17 * 3299 * 58235400281779469774089675573<29> * 2378880842...93<124>
6 207 162 125 2^5 * 3 * 47 * 71 * 46769 * 2446357 * 239072218310985716299<21> * 2727120672...71<125>
24 95 132 127 2^6 * 3 * 191 * 7190570725...73<127>
220 76 179 131 3 * 37 * 196279 * 67633937857<11> * 214459095879211<15> * 4799858808865997<16> * 1219627949...57<131>
44 100 165 131 3^2 * 5^2 * 23 * 101 * 32193812086790437631591111071<29> * 1579227732...87<131>
120 69 144 134 2^3 * 3^2 * 5 * 87957781 * 2525003043...17<134>
33 105 160 134 3 * 421 * 36045147435185766110239<23> * 3968504590...63<134>
40 102 164 134 3^2 * 7 * 41 * 103 * 5048627 * 314281766178184019<18> * 9136003830...01<134>
44 95 157 135 2^6 * 71 * 84651443 * 21539843947<11> * 1944779067...37<135>
48 96 162 135 5^2 * 7 * 13 * 17 * 97 * 193 * 769 * 2240847267821093<16> * 4018748438...97<135>
120 67 140 136 2^5 * 3^2 * 5 * 11 * 3505266172...51<136>
34 108 166 136 3^4 * 5 * 7^2 * 11 * 13 * 19 * 37 * 109 * 24677 * 82427907020617<14> * 6384692207...19<136>
33 107 163 137 3^4 * 89 * 1439 * 132913999 * 36989255297<11> * 3857649728...71<137>
15 138 163 140 2 * 7 * 19 * 47 * 73 * 139 * 730752899295673<15> * 1885880199...29<140>
44 85 140 140 2^2 * 1481149021...67<140>
33 108 164 140 2^5 * 7 * 13 * 19 * 37 * 109 * 5616915816027937<16> * 5180214640...51<140>
38 108 171 140 3^3 * 5 * 7 * 13 * 37 * 73 * 109 * 463 * 2295981521<10> * 10194514709<11> * 1172583411...77<140>
38 99 157 141 2^3 * 28702903 * 61812479 * 1959934618...63<141>
44 87 144 141 2^4 * 7^2 * 1463012503...63<141>
15 130 153 142 2 * 7 * 11 * 131 * 239 * 52453 * 2697189625...61<142>
45 100 166 142 2^2 * 11 * 41 * 101 * 1889593228067850677<19> * 5325166603...57<142>
48 99 167 142 2^3 * 13 * 23 * 15750739 * 747779965444163<15> * 1968233231...77<142>
6 189 148 143 2^2 * 3 * 3697 * 5303781468...79<143>
33 109 166 143 3 * 11^3 * 21743882030832718199<20> * 2467723006...41<143>
48 95 161 144 2^6 * 11 * 83 * 191 * 7488935269<10> * 1249808145...51<144>
42 99 162 144 2^7 * 3 * 43 * 5179 * 16369 * 225263 * 3988982717...87<144>
35 105 162 144 31 * 349 * 49081 * 57881 * 76651 * 2607184262...97<144>
38 104 165 144 5 * 17^2 * 53 * 13745578568661659<17> * 2093846293...17<144>
45 98 162 145 2 * 29 * 6310812936808511<16> * 2473552328...97<145>
46 97 162 146 2^3 * 13 * 77001190768501<14> * 2640994236...69<146>
40 103 166 146 2^3 * 3185298850077608111<19> * 6053829621...51<146>
40 98 158 146 3 * 2609 * 30219437 * 6369256022...23<146>
33 98 149 147 2^7 * 3311841127...71<147>
220 70 165 147 3 * 71 * 2113 * 49019 * 11511961 * 6424404073...31<147>
220 65 153 148 2^3 * 131 * 239 * 1264017592...71<148>
46 96 160 148 3^3 * 5 * 7 * 13 * 17^3 * 97 * 193 * 4069016342...43<148>
120 73 153 149 2^3 * 3^2 * 5^2 * 9210668463...61<149>
35 98 151 150 2 * 29 * 1645969548...99<150>
33 106 161 150 2^6 * 107 * 9203969 * 9459149398...01<150>
40 106 170 150 3 * 59 * 107 * 1997 * 2929612792817<13> * 8910560176...27<150>
12 145 157 151 2^2 * 11 * 59 * 401 * 5819177598...31<151>
48 93 157 151 2^2 * 13 * 21149 * 4122606567...57<151>
40 107 172 152 2^2 * 33653625670800050957<20> * 2933718773...31<152>
220 67 158 152 2^5 * 41777 * 1146226474...39<152>
39 99 158 152 23 * 31 * 313 * 9175764223...89<152>
6 209 163 154 2^2 * 3^2 * 23 * 59 * 199 * 379 * 2334891429...43<154>
220 69 162 154 2^3 * 5 * 11 * 139 * 4229 * 2867463269...31<154>
34 104 160 154 3 * 5 * 53 * 353 * 7530400262...01<154>
44 99 163 159 2^3 * 7^2 * 19 * 8108799278...27<159>
48 97 164 160 2^2 * 2129 * 2826144531...91<160>
34 107 164 161 2^2 * 491 * 4229170191...79<161>
220 78 183 162 3^2 * 7 * 79 * 151 * 11369 * 564511026839<12> * 1856384222...77<162>
120 80 167 163 11 * 17 * 41 * 7748308687...93<163>
220 73 172 163 2^3 * 3659 * 17257 * 3439347463...77<163>
220 77 181 166 2^3 * 29 * 1765990895203<13> * 9933631079...21<166>
220 75 176 166 2^5 * 151 * 10573061 * 1645930325...41<166>
220 79 186 181 2^9 * 5 * 11 * 6995152439...81<181>
220 80 188 185 3 * 17 * 41 * 2072518813...21<185>

[/code]

@garambois
Replace the line
[code]
if (\$3==1) # index only 1
[/code]
as if-statement in the file "make_easy.awk" and run it again.

 garambois 2022-09-18 19:07

Here is the list proposed by Karsten (thanks to him) obtained with the updated files of seqs where only index 1 exists unfactored sorted by bases (There are so many of them !) :

[CODE] Base exp digits cofactor size
10 149 150 149
10 157 158 149
102 65 131 112
102 73 147 125
102 77 156 120
102 81 164 130
102 82 166 128
102 83 168 154
102 85 172 165
102 86 174 162
102 91 184 170
102 92 186 183
102 93 188 182
102 95 192 173
104 67 136 110
104 71 144 115
104 79 160 159
104 84 170 137
104 90 182 134
104 91 184 163
104 93 188 186
104 94 190 184
104 95 192 162
105 58 118 110
105 64 130 118
105 68 138 135
105 70 142 132
105 72 146 118
105 74 150 146
105 78 158 140
105 80 162 106
105 81 164 160
105 82 166 130
105 86 174 174
105 88 178 161
105 90 182 171
105 91 185 142
105 92 187 183
105 93 189 179
105 94 191 162
105 95 193 159
1058 53 161 145
1058 55 167 138
1152 51 157 152
1152 55 169 138
1155 51 157 148
1155 52 160 127
1155 54 166 121
1184 51 157 121
1184 55 170 120
119 62 129 121
119 64 133 118
119 68 141 105
119 70 145 140
119 72 149 136
119 74 153 143
119 78 162 157
119 80 166 157
119 84 174 157
119 86 178 173
119 88 183 178
119 90 187 178
119 91 189 167
119 92 191 185
119 94 195 181
12 145 157 151
120 59 124 117
120 63 132 115
120 67 140 136
120 69 144 134
120 73 153 149
120 80 167 163
120 83 174 163
120 84 176 149
120 85 178 158
120 87 182 158
120 89 186 165
120 90 188 183
120 91 190 176
120 92 192 151
120 93 194 175
120 94 196 184
120 95 198 182
1210 49 152 112
1210 53 164 114
12496 29 119 114
12496 37 152 148
1352 52 163 154
137 89 189 145
14264 39 163 138
14264 40 167 159
14288 31 129 113
14288 39 163 145
14288 40 167 159
14316 37 155 117
14316 39 163 148
14316 40 167 152
15 130 153 142
15 138 163 140
15015 32 134 115
15015 36 151 115
15015 38 159 146
15015 40 168 114
15472 27 114 110
162 83 184 132
162 84 186 150
162 85 189 183
162 86 191 188
162 87 193 191
162 89 197 180
162 90 200 184
173 83 184 162
18 135 170 164
193 83 188 176
20 105 137 123
20 122 159 150
20 123 161 117
20 124 162 145
20 125 163 134
200 73 169 159
200 74 171 138
200 75 173 156
200 77 178 154
200 78 180 145
200560490130 13 148 114
21 102 135 129
21 106 141 126
21 119 158 128
21 120 159 120
21 121 160 147
21 124 164 141
210 61 143 133
210 63 147 117
210 66 154 143
210 69 161 131
210 73 171 150
210 77 180 147
210 78 182 179
210 79 184 113
210 80 187 177
22 105 142 119
22 111 150 136
22 113 152 114
22 119 160 122
22 123 166 149
220 70 165 147
220 75 176 166
220 78 183 143
220 80 188 170
229 79 185 181
231 65 154 142
231 67 159 150
231 69 164 160
231 76 180 164
231 78 185 140
24 95 132 127
24 97 135 115
24 111 154 149
24 115 160 123
24 118 164 147
24 119 165 143
24 120 166 151
24 121 168 130
24 125 173 135
26 107 152 136
26 113 160 122
26 115 163 148
26 116 165 157
26 119 169 149
26 120 170 154
276 59 145 142
276 61 150 133
276 63 155 115
276 64 157 149
276 65 159 154
276 67 164 147
276 69 169 157
28 99 144 114
28 109 158 139
28 113 164 157
28 114 166 150
28 116 168 152
28 117 170 120
28 119 173 142
284 64 158 140
284 69 170 150
30 105 156 130
30 108 160 154
30 110 163 150
30 119 177 134
30 120 178 156
306 53 133 122
306 59 147 118
306 61 152 110
306 63 157 113
31704 35 158 141
31704 38 172 171
31704 39 176 153
33 98 149 147
33 102 155 123
33 105 160 134
33 106 161 150
33 107 163 137
33 108 164 140
33 109 166 143
34 103 158 124
34 104 160 154
34 105 161 110
34 107 164 161
34 108 166 136
35 98 151 150
38 99 157 141
38 104 165 144
38 108 171 140
385 58 150 112
385 62 161 142
39 99 158 152
39 103 164 143
39 104 166 127
39 106 169 160
392 64 167 159
392 65 169 166
396 41 107 94
396 43 113 103
396 45 118 113
396 47 123 101
396 49 128 117
396 51 133 116
396 54 141 127
396 55 144 134
396 57 149 140
396 58 152 121
396 59 154 144
396 60 157 137
396 61 159 147
396 62 162 155
396 63 165 155
396 64 167 142
396 65 170 149
40 93 150 121
40 98 158 146
40 102 164 134
40 103 166 146
40 106 170 150
40 107 172 152
42 99 162 144
44 85 140 129
44 87 144 141
44 95 157 135
44 99 163 159
44 100 165 131
45 98 162 145
45 100 166 142
46 96 160 148
46 97 162 146
48 93 157 151
48 95 161 144
48 96 162 135
48 97 164 160
48 99 167 142
51 92 157 148
51 96 164 154
51 98 168 159
51 99 169 154
52 91 157 151
52 95 164 145
52 96 165 140
52 97 167 150
52 99 170 143
54 91 158 156
54 95 165 160
54 97 169 145
54 99 172 163
55 90 157 149
55 92 160 155
55 94 164 150
55 98 171 166
55 99 172 126
552 59 163 147
56 83 146 133
56 85 149 138
56 87 153 125
56 89 156 144
56 90 158 141
56 91 160 153
56 93 163 157
56 95 167 161
56 97 170 150
56 98 172 154
564 47 130 120
57 86 151 145
57 88 155 141
57 94 165 160
57 95 167 161
57 98 172 170
57 100 176 154
58 89 157 141
58 97 172 161
6 189 148 143
6 207 162 125
6 209 163 154
60 81 145 142
60 87 156 149
60 91 163 158
60 95 170 162
60 96 172 163
60 97 173 164
60 99 177 136
60 100 179 151
62 89 160 154
62 92 165 151
62 94 169 142
62 96 173 158
62 97 174 161
62 99 178 159
63 90 162 152
63 91 164 140
63 92 166 152
63 94 170 154
63 96 173 159
63 97 175 150
63 98 177 144
63 100 180 152
6469693230 16 158 156
6469693230 18 178 166
6469693230 19 188 120
6469693230 20 197 173
65 86 156 147
65 89 161 155
65 90 163 150
65 94 170 162
65 98 178 175
66 83 152 143
66 89 163 149
66 92 168 167
66 93 170 146
66 95 174 158
66 97 177 172
66 99 181 167
660 53 150 128
660 55 156 142
660 60 170 140
68 83 153 144
68 86 158 127
68 87 160 149
68 89 164 161
68 90 165 123
68 91 167 154
68 92 169 161
68 93 171 167
68 97 178 170
68 99 182 157
68 100 184 170
69 82 151 145
69 84 155 146
69 86 158 147
69 88 162 158
69 90 166 155
69 91 168 151
69 92 169 159
69 93 171 125
69 94 173 145
69 96 177 144
69 97 179 177
69 100 184 164
696 37 106 97
696 39 112 94
696 47 134 90
696 52 149 135
696 54 154 144
696 55 157 135
696 56 160 149
696 58 166 138
696 59 169 160
696 60 171 165
70 81 150 149
70 83 154 142
70 89 165 162
70 91 169 157
72 91 170 137
72 98 183 178
720 49 141 134
720 53 152 111
720 57 164 112
720 59 170 126
74 83 156 137
74 85 159 147
74 87 163 151
74 89 167 151
74 90 169 151
74 91 171 135
74 93 174 147
74 97 182 169
74 98 184 178
74 99 186 174
75 86 162 154
75 92 173 156
75 96 180 153
76 65 123 101
76 67 127 116
76 69 130 127
76 71 134 119
76 73 138 129
76 75 142 132
76 77 145 121
76 79 149 132
76 83 157 136
76 85 160 154
76 87 164 158
76 89 168 160
76 91 172 131
76 93 175 152
76 95 179 173
76 97 183 141
76 98 185 146
76 99 187 162
76 100 189 153
77 54 102 94
77 58 109 106
77 68 128 109
77 70 132 122
77 72 136 119
77 74 140 135
77 76 143 125
77 78 147 141
77 80 151 145
77 82 155 143
77 84 158 143
77 88 166 145
77 89 168 163
77 90 170 156
77 92 174 164
77 94 177 149
77 96 181 165
77 97 183 175
77 99 187 166
78 65 124 114
78 69 131 125
78 71 135 125
78 73 139 115
78 77 147 128
78 79 150 130
78 81 154 138
78 83 158 125
78 85 162 160
78 86 164 126
78 87 165 154
78 89 169 161
78 91 173 167
78 94 179 171
78 95 181 163
78 96 182 166
78 97 184 170
78 98 186 184
78 99 188 176
78 100 190 173
80 59 113 110
80 63 121 110
80 67 128 119
80 71 136 132
80 73 140 114
80 75 143 113
80 77 147 135
80 79 151 150
80 81 155 140
80 82 157 148
80 83 159 136
80 85 162 149
80 87 166 164
80 88 168 151
80 91 174 170
80 92 176 159
80 93 178 173
80 95 181 152
80 96 183 143
80 97 185 182
80 98 187 148
80 99 189 176
80 100 191 152
82 67 129 122
82 69 133 132
82 73 140 136
82 75 144 123
82 77 148 125
82 79 152 139
82 80 154 124
82 81 156 140
82 83 159 122
82 85 163 149
82 88 169 139
82 89 171 152
82 91 175 162
82 93 179 151
82 95 182 161
82 97 186 174
82 98 188 184
82 99 190 182
82 100 192 175
84 61 118 114
84 63 122 105
84 65 126 107
84 67 130 124
84 69 134 123
84 71 138 121
84 73 141 131
84 75 145 139
84 77 149 128
84 81 157 117
84 83 161 149
84 85 164 143
84 87 168 146
84 89 172 162
84 91 176 165
84 92 178 132
84 93 180 168
84 94 182 178
84 95 184 174
84 97 188 157
84 100 193 158
85 58 112 98
85 62 120 112
85 64 123 106
85 68 131 115
85 70 135 105
85 72 139 113
85 74 143 136
85 76 147 135
85 78 151 126
85 80 154 136
85 82 158 154
85 84 162 140
85 85 164 134
85 86 166 160
85 89 172 137
85 90 174 161
85 92 178 156
85 93 179 131
85 94 181 162
85 96 185 158
85 97 187 149
85 98 189 184
85 99 191 148
8589869056 19 189 162
8589869056 20 199 168
86 63 122 109
86 73 142 135
86 75 146 138
86 77 149 142
86 79 153 144
86 80 155 150
86 81 157 137
86 85 165 152
86 87 169 164
86 89 173 131
86 90 175 132
86 91 177 152
86 93 180 155
86 94 182 174
86 95 184 178
86 96 186 166
86 97 188 175
86 98 190 174
86 99 192 189
86 100 194 161
87 54 105 95
87 56 109 105
87 60 117 102
87 62 120 99
87 66 128 112
87 68 132 103
87 70 136 122
87 72 140 120
87 76 148 142
87 78 152 128
87 80 155 148
87 82 159 151
87 83 161 153
87 84 163 151
87 86 167 156
87 88 171 165
87 89 173 138
87 90 175 145
87 92 179 170
87 94 183 182
87 95 184 147
87 96 186 176
87 97 188 184
87 98 190 167
87 99 192 189
87 100 194 173
88 57 111 94
88 59 115 113
88 63 123 106
88 65 127 110
88 67 131 129
88 69 135 130
88 71 139 129
88 73 143 127
88 75 146 123
88 77 150 150
88 80 156 124
88 83 162 132
88 85 166 156
88 86 168 140
88 87 170 158
88 89 174 125
88 90 176 128
88 91 178 151
88 93 181 168
88 95 185 167
88 96 187 171
88 97 189 160
88 98 191 178
88 99 193 162
88 100 195 172
882 55 163 156
882 57 169 141
882 58 172 131
882 59 175 168
882 60 178 129
90 61 120 107
90 63 124 116
90 67 132 98
90 69 136 130
90 73 144 124
90 75 148 128
90 77 151 143
90 79 155 125
90 83 163 137
90 85 167 166
90 87 171 155
90 89 175 172
90 90 177 129
90 91 179 159
90 92 181 160
90 93 183 161
90 95 187 176
90 96 189 154
90 97 191 165
90 98 192 113
90 99 194 173
90 100 196 177
91 64 125 100
91 68 133 124
91 70 137 125
91 74 145 132
91 76 149 137
91 80 157 141
91 82 161 146
91 84 164 147
91 86 168 157
91 90 176 166
91 91 178 169
91 92 180 177
91 93 182 153
91 94 184 180
91 95 186 165
91 96 188 175
91 97 190 175
91 98 192 189
91 99 194 190
91 100 196 181
92 63 124 94
92 67 132 123
92 69 136 106
92 71 140 121
92 73 144 135
92 75 148 127
92 79 156 142
92 83 164 152
92 85 167 142
92 86 169 149
92 87 171 157
92 89 175 171
92 91 179 163
92 93 183 158
92 94 185 174
92 95 187 170
92 96 189 158
92 97 191 182
92 98 193 189
92 99 195 180
92 100 197 166
93 62 122 116
93 64 126 116
93 74 146 141
93 78 154 148
93 80 158 143
93 82 162 158
93 86 170 149
93 92 181 162
93 93 183 162
93 94 185 166
93 96 189 177
93 97 191 169
93 99 195 173
94 65 129 119
94 71 141 109
94 79 156 137
94 83 164 157
94 84 166 150
94 85 168 134
94 87 172 144
94 88 174 140
94 89 176 135
94 91 180 172
94 92 182 170
94 93 184 163
94 95 188 137
94 96 190 182
94 97 192 164
94 98 194 157
94 99 196 164
94 100 198 156
95 64 127 114
95 66 131 110
95 68 134 125
95 70 138 129
95 74 146 143
95 76 150 146
95 78 154 151
95 80 158 140
95 82 162 143
95 84 166 148
95 90 178 153
95 92 182 163
95 94 186 186
95 95 188 184
95 96 190 175
95 98 194 180
95 99 196 180
95 100 198 167
96 61 122 111
96 63 126 94
96 65 130 105
96 67 134 118
96 69 138 102
96 75 149 139
96 77 153 146
96 79 157 148
96 81 161 153
96 83 165 134
96 84 167 155
96 85 169 139
96 86 171 166
96 87 173 161
96 91 181 158
96 93 185 144
96 94 187 181
96 96 191 154
96 97 193 180
96 98 195 185
96 99 197 179
96 100 199 149
966 51 153 112
966 52 156 149
966 54 162 153
966 55 165 126
966 59 177 166
9699690 25 176 140
98 98 196 179
99 58 116 108
99 62 124 86
99 64 128 105
99 72 144 94
99 78 156 131
99 80 160 126
99 82 164 153
99 85 170 144
99 86 172 170
99 88 176 171
99 90 180 143
99 92 184 175
99 94 188 181
99 95 190 171
99 96 192 176
99 97 194 156
99 98 196 178
99 99 198 181
99 100 200 174
[/CODE]

 EdH 2022-09-18 19:38

How much of a priority would you place in advancing the list to term 2? I hesitate to start a new thread for this endeavor, but it is a sub-project that has an actual end point. We brought very few new members into the fold with the other thread, so I would not present this in that manner.

The other thread is somewhat winding down, so a different direction with new possibilities may be appealing to some.

Thoughts from those of us that would do the factoring?

 VBCurtis 2022-09-18 19:51

Just move garambois' post to its own thread, simple?

 gd_barnes 2022-09-19 02:42

[QUOTE=garambois;613636]Here is the list proposed by Karsten (thanks to him) obtained with the updated files of seqs where only index 1 exists unfactored sorted by bases (There are so many of them !) :
<snip>[/QUOTE]

[QUOTE=EdH;613638]How much of a priority would you place in advancing the list to term 2? I hesitate to start a new thread for this endeavor, but it is a sub-project that has an actual end point. We brought very few new members into the fold with the other thread, so I would not present this in that manner.

The other thread is somewhat winding down, so a different direction with new possibilities may be appealing to some.

Thoughts from those of us that would do the factoring?[/QUOTE]
I will be happy to work on some of these. I'd still need a couple days to finish up with some other stuff.

Just move garambois' post to its own thread, simple?[/QUOTE]
I agree with this! A new thread for this new effort so that other routine statuses aren't overwhelmed in this thread. My thought is to move all relevant posts starting with Karsten's original post that initiated it.

 gd_barnes 2022-09-19 03:22

My effort in the other thread to work on all same-parity exponents with starting size > 185 digits will remove quite a few sequences from the list for the new index 1 effort. I'm done with the work but am currently in the process of adding everything to the FactorDB. I'll report in that thread when I'm done.

Also as I continue with the general initialization effort for medium to large size opposite-parity exponents for bases < 100 previously mentioned in this thread, more index 1's will be eliminated. As for the recent base 100-195 effort, there were next to zero index 1's there because most bases in that range are prime. For prime bases, the index is always >= 2 due to another factoring project.

It might make sense to run a new index 1 list sometime later on Monday.

 EdH 2022-09-19 13:53

[QUOTE=gd_barnes;613673]. . .
It might make sense to run a new index 1 list sometime later on Monday.[/QUOTE]If I'm to moderate the new thread, I'll try to use a script that checks the db and lists sequences in the same manner as the other thread. I'd prefer not to task others with providing the lists, but welcome any notes of error.

 EdH 2022-09-19 15:22

[QUOTE=EdH;613695]. . ., but welcome any notes of error.[/QUOTE]I would also welcome other notes: encouragement, praise, etc. as well as criticism.:smile:

When I initiate the other thread, I will move relevant posts from this one and continually edit the first as with the other thread. I believe the first post I will move (and begin editing) will be #1907.

@Karsten: If there's an objection with my modifications to your post, let me know.

 gd_barnes 2022-09-19 15:28

[QUOTE=EdH;613695]If I'm to moderate the new thread, I'll try to use a script that checks the db and lists sequences in the same manner as the other thread. I'd prefer not to task others with providing the lists, but welcome any notes of error.[/QUOTE]

[QUOTE=EdH;613699]I would also welcome other notes: encouragement, praise, etc. as well as criticism.:smile:

When I initiate the other thread, I will move relevant posts from this one and continually edit the first as with the other thread. I believe the first post I will move (and begin editing) will be #1907.[/QUOTE]
Sounds good to me.

Go Ed go! We know you can create that awesome list! :smile:

(Oh...maybe I'm getting a little excited too soon.)

 gd_barnes 2022-09-19 15:37

I'm down to base 96 in my medium-large exponent opposite-parity initialization effort. With base 96 alone, I think something like 7-8 index 1's were eliminated as I entered them in the DB in the last hour. The bases with the extra-high exponents (starting size > 180 digits) will have many sequences ripe for elimination from index 1 because they are very unlikely to have ever been searched. Non-prime bases in the 90s and to a lesser extent in the 80s should be the most prolific in this regard.

All times are UTC. The time now is 16:39.