mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   XYYXF Project (https://www.mersenneforum.org/forumdisplay.php?f=110)
-   -   Leyland Primes: ECPP proofs (https://www.mersenneforum.org/showthread.php?t=19348)

Batalov 2014-05-12 21:07

Leyland Primes: ECPP proofs
 
Placeholder for x[SUP]y[/SUP]+y[SUP]x[/SUP] prime proofs.
[url]http://www.primefan.ru/xyyxf/primes.html#0[/url]
There are some PRPs available starting from ~6600 digit size.

Contact [URL="http://www.mersenneforum.org/member.php?u=1540"]XYYXF[/URL] to reserve.

Batalov 2014-05-12 21:17

There are a few existing reservations that make one very curious:
[I]222748^3+3^222748 (a 106278 decimal digits PRP by Anatoly Selevich) is reserved by Jens Franke.[/I]
Is it that the low value of y=3 makes for a very special case for a ECPP proof?

XYYXF 2014-05-13 08:01

AFAIK, they're going to make a CIDE proof, as it was done for 8656^2929+2929^8656:
[url]http://www.mersenneforum.org/showthread.php?t=17554[/url]

henryzz 2014-05-13 10:00

[QUOTE=XYYXF;373341]AFAIK, they're going to make a CIDE proof, as it was done for 8656^2929+2929^8656:
[URL]http://www.mersenneforum.org/showthread.php?t=17554[/URL][/QUOTE]

Does anyone know whether this method has been peer reviewed/checked over yet? Is there an available implementation of this algorithm?

RichD 2015-01-20 22:40

PRP Now Proven Prime
 
I completed several Primo proofs:

[url="http://factordb.com/index.php?id=1100000000537924327&open=prime"]2284^1985+1985^2284[/url]
[url="http://factordb.com/index.php?id=1100000000536776621&open=prime"]2305^1374+1374^2305[/url]
[url="http://factordb.com/index.php?id=1100000000536776641&open=prime"]2317^1354+1354^2317[/url]
[url="http://factordb.com/index.php?id=1100000000534878923&open=prime"]2328^923+923^2328[/url]
[url="http://factordb.com/index.php?id=1100000000534854226&open=prime"]2343^962+962^2343[/url]
[url="http://factordb.com/index.php?id=1100000000534870605&open=prime"]2383^1710+1710^2383[/url]

Two more will be completed this week.

2349^1772+1772^2349
2408^975+975^2408

RichD 2015-01-24 14:31

[QUOTE=RichD;393006]Two more will be completed this week.

2349^1772+1772^2349
2408^975+975^2408[/QUOTE]

All done.

XYYXF 2015-02-02 15:10

Thanks for the proofs :)

RichD 2015-06-04 09:50

A few more Primo proofs:

[url="http://factordb.com/index.php?id=1100000000781133141&open=prime"]2613^2348+2348^2613[/url]
[url="http://factordb.com/index.php?id=1100000000781133133&open=prime"]2665^1702+1702^2665[/url]
[url="http://factordb.com/index.php?id=1100000000781133070&open=prime"]2685^1904+1904^2685[/url]
[url="http://factordb.com/index.php?id=1100000000781133089&open=prime"]2696^2451+2451^2696[/url]

RichD 2016-01-08 04:12

A few more Primo proofs:

[url="http://factordb.com/index.php?id=1100000000809752661&open=prime"]2596^1867+1867^2596[/url]
[url="http://factordb.com/index.php?id=1100000000809752888&open=prime"]2622^2129+2129^2622[/url]
[url="http://factordb.com/index.php?id=1100000000809753326&open=prime"]2625^1094+1094^2625[/url]
[url="http://factordb.com/index.php?id=1100000000809753669&open=prime"]2680^2053+2053^2680[/url]
[url="http://factordb.com/index.php?id=1100000000809753913&open=prime"]2722^2445+2445^2722[/url]
[url="http://factordb.com/index.php?id=1100000000809753933&open=prime"]2759^2200+2200^2759[/url]

CRGreathouse 2016-01-08 17:02

[QUOTE=henryzz;373345]Does anyone know whether this method has been peer reviewed/checked over yet? Is there an available implementation of this algorithm?[/QUOTE]

I wonder these things myself (many months later).

XYYXF 2016-01-10 20:27

Thanks for the proofs :-)

The page is updated: [url]http://www.primefan.ru/xyyxf/primes.html#0[/url]


All times are UTC. The time now is 17:52.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.