![]() |
2021-06-15 14:00 UTC
36 factors out of 10,950 curves: 19 P+1 smooth, 17 P-1 smooth [CODE] 2021-04-22 06:48:35.610 [M]287873[/M] B1=10000000 B2=1000000000 start=2/7 167460871862758047584571103871 98.080 bits P+1 smooth P+1=2^7*3*7*149*31153*137737*1326817*73440613 P-1=2*5*287873*7162339*55539811*146235611 2021-04-23 03:15:32.123 [M]1600967[/M] B1=2000000 B2=146000000 start=2/7 20960634373165261374400215271 94.082 bits P-1 smooth P+1=2^3*11*13*16047334103*1141761785856421 P-1=2*3^4*5*219889*864733*1600967*85006373 2021-04-23 10:25:31.597 [M]1601783[/M] B1=2000000 B2=146000000 start=2/7 5920048152491971978196689064497 102.223 bits P-1 smooth P+1=2*7*1034951899*408579937608148822093 P-1=2^4*3*191*6637*10103*53017*1601783*113399107 2021-04-23 11:04:21.267 [M]296663[/M] B1=10000000 B2=500000000 start=2/7 33472736879943425145991507583 94.757 bits P+1 smooth P+1=2^7*3^2*7*79*3361*41897*9979727*37388971 P-1=2*23*149*34963*296663*470841841030657 2021-04-23 11:51:30.253 [M]1602143[/M] B1=2000000 B2=146000000 start=2/7 43496906104874570142712609 85.169 bits P-1 smooth P+1=2*5*7*11*56489488447889052133393 P-1=2^5*3^3*15241*17977*1602143*114686597 2021-04-23 16:33:29.030 [M]298307[/M] B1=10000000 B2=500000000 start=2/7 14600351802304915562080191901748143 113.492 bits P-1 smooth P+1=2^4*17*53677763979062189566471293756427 P-1=2*3*59*119591*298307*1512431*2126617*359445677 2021-04-24 10:32:21.530 [M]92821[/M] B1=40000000 B2=5240000000 start=2/7 6042060144547476324897523777583 102.253 bits P+1 smooth P+1=2^4*3*23*131*331*1039*2791*9151*19069*249427781 P-1=2*7*92821*3105342439*1497273943641227 2021-04-24 19:44:44.873 [M]14033251[/M] B1=500000 B2=10000000 start=6/5 105040117068459648578879 76.475 bits P+1 smooth P+1=2^6*3*5*13*47*2377*5743*5953*2203631 P-1=2*19^2*14033251*10367157737549 2021-04-27 01:25:29.000 [M]2300563[/M] B1=2000000 B2=146000000 start=2/7 5089496112298754218607 72.108 bits P+1 smooth P+1=2^4*3*7*13*23*67*1399*17077*31649017 P-1=2*31*2300563*35681981746451 2021-04-28 21:04:47.190 [M]19000027[/M] B1=1000000 B2=57000000 start=6/5 67480853305125346435319 75.837 bits P+1 smooth P+1=2^3*3*5*61*389*19553*152027*7972339 P-1=2*4021*19000027*441633774077 2021-04-29 19:08:41.640 [M]97613[/M] B1=40000000 B2=2000000000 start=6/5 64164573431546940521972630767 95.696 bits P+1 smooth P+1=2^4*19*3761*6569*1183279*128173*56329439 P-1=2*3^2*1877*97613*19455879744956054287 2021-04-29 20:38:32.100 [M]92419[/M] B1=40000000 B2=5240000000 start=6/5 26566754812550500792150275766183 104.389 bits P+1 smooth P+1=2^3*41*1013*26309*26267*17137*157061*42987011 P-1=2*3^3*92419*332567*1031519539*15517682839 2021-04-29 22:04:03.763 [M]92459[/M] B1=40000000 B2=40000000 start=6/5 543259182333011804411673092327891767 118.709 bits P+1 smooth P+1=2^3*11*6133*78173*411667*758189*1997101*20657183 P-1=2*3^3*311*92459*7965173*43924671467181023777 2021-04-30 04:37:22.343 [M]19000103[/M] B1=1000000 B2=54000000 start=6/5 38637801535161640335089 75.032 bits P-1 smooth P+1=2*3*5*7*1097*167720630008949257 P-1=2^4*53*163151*14698427*19000103 2021-05-03 [M]8413609[/M] B1=600000 B2=18000000 start=80/13 1707392059494028275527 70.532 bits P+1 smooth P+1=2^3*3^3*103*367*1153*23293*7786127 P-1=2*137*8413609*740628413011 2021-05-06 [M]8805827[/M] B1=500000 B2=26500000 start=2/7 4175293398605056163377 71.822 bits P-1 smooth P+1=2*29*37*239*236917*34360791211 P-1=2^4*3^2*479*479*19559*351457*8805827 2021-05-07 [M]1924751[/M] B1=2500000 B2=2500000 start=2/7 4106464775643002298257 71.798 bits P+1 smooth P+1=2*3*23*109*1621*4919*15241*2246411 P-1=2^4*19*43*263*1924751*620577121 2021-05-07 [M]14034199[/M] B1=1260000 B2=69300000 start=2/7 91301911349511932534929 76.273 bits P-1 smooth P+1=2*5*61*149675264507396610713 P-1=2^4*3*23*734017*8028179*14034199 2021-05-10 [M]8676163[/M] B1=550000 B2=550000 start=2/7 538825884739595715103 68.868 bits P-1 smooth P+1=2^5*19*43*15973*568091*2271287 P-1=2*3*2953*12163*288181*8676163 2021-05-10 [M]14037587[/M] B1=500000 B2=23000000 start=2/7 4451469611034755351513689 81.881 bits P-1 smooth P+1=2*5*59*179*191*199*769*1442067492049 P-1=2*23*3803*5639*75037*49411*1217077 2021-05-12 [M]7974041[/M] B1=500000 B2=26500000 start=6/5 68707931929349790615353 75.863 bits P-1 smooth P+1=2*3^2*621347*7357529*834964831 P-1=2^3*233*252913*7974041*18277271 2021-05-12 [M]8815291[/M] B1=500000 B2=26000000 start=6/5 384543458187807031642369 78.347 bits P-1 smooth P+1=2*5*137*280688655611537979301 P-1=2^8*3^2*7^2*17*3037*7484047*8815291 2021-05-19 [M]505877[/M] B1=5000000 B2=365000000 start=2/7 44167102513715082525497417 85.191 bits P+1 smooth P+1=2*3*79*38729*41413*724729*80162629 P-1=2^3*421*17417*505877*1488361886393 2021-05-21 [M]317557[/M] B1=7500000 B2=592500000 start=2/7 19609089470736235875780917849 93.986 bits P+1 smooth P+1=2*3^2*5^2*7*11*1613*1774667*3473221*56920739 P-1=2^3*317557*7718728240416773947583 2021-05-21 [M]10436197[/M] B1=750000 B2=750000 start=6/5 107236434531058304052209 76.505 bits P-1 smooth P+1=2*3*5*7^2*59*521*2153299*1102125263 P-1=2^4*31*71*506479*576101*10436197 2021-05-22 [M]10436197[/M] B1=1500000 B2=40000000 start=2/7 30961714233434346754568163721 94.644 bits P-1 smooth P+1=2*7^2*212840241931*1484380287573919 P-1=2^3*3^2*5*211*6257*6395981*975943*10436197 2021-05-24 [M]318007[/M] B1=7500000 B2=592500000 start=2/7 42491473899696171527294085337 95.101 bits P-1 smooth P+1=2*109*728831*267435136387605011711 P-1=2^3*3^2*19*337*2131*288577*318007*471307069 2021-05-25 [M]4006333[/M] B1=2500000 B2=2500000 start=2/7 720987230884185534870238439 89.220 bits P+1 smooth P+1=2^3*3*5*11*317*19433*55663*881743*1806533 P-1=2*53*273787*4006333*6201001559113 2021-05-25 [M]4006423[/M] B1=2500000 B2=2500000 start=2/7 2993775828088355588457143 81.308 bits P+1 smooth P+1=2^3*3^2*7*193*593*2927*8123*47279*46171 P-1=2*19*6661*4006423*2952156977603 2021-05-30 [M]9903857[/M] B1=1200000 B2=67200000 start=2/7 112297389502182125412007 76.572 bits P-1 smooth P+1=2^3*43*7949*41067543051408443 P-1=2*3^3*11*53*57193*6297383*9903857 2021-06-01 [M]1891277[/M] B1=5000000 B2=365000000 start=2/7 9032797260237960505049348164007 102.833 bits P+1 smooth P+1=2^3*3*29^2*139*197*263*661*2591*159179*227941607 P-1=2*37*1891277*18189535877*3548246508311 2021-06-06 [M]4021001[/M] B1=2500000 B2=172500000 start=2/7 85759933205284860056473 76.183 bits P-1 smooth P+1=2*43*47*269*189407*416427900659 P-1=2^3*3^2*7*268439*4021001*157642787 2021-06-07 [M]1717043[/M] B1=5000000 B2=365000000 start=2/7 36120234091485938570203343 84.901 bits P+1 smooth P+1=2^4*3*379*5861*39829*1209811*7030423 P-1=2*7*151*1717043*9950946743408221 2021-06-09 [M]4030357[/M] B1=2500000 B2=177500000 start=2/7 307255907312376282607943 78.024 bits P+1 smooth P+1=2^3*3*43*733*70709*1804129*3184009 P-1=2*7*109*272381*4030357*183411001 2021-06-13 [M]4034971[/M] B1=2500000 B2=172500000 start=2/7 35646482986018490883974514241 94.848 bits P-1 smooth P+1=2*317*56224736571007083413209013 P-1=2^6*3*5*13*18119*1333411*4034971*29299717 2021-06-14 [M]4032491[/M] B1=2500000 B2=172500000 start=2/7 7131831162329673363401 72.595 bits P+1 smooth P+1=2*3^2*1839949*1975823*108987007 P-1=2^3*5^2*463157*4032491*19092791 [/CODE] |
[QUOTE=kriesel;576642]Start etc. breakdown is[/QUOTE]That breakdown is now also available at the bottom of the [url=https://www.mersenne.org/report_pplus1/]report page[/url].
|
[QUOTE=chalsall;576646]A question just hit me... Is the space explored with P+1 different as a function of the B1 and B2 values?[/QUOTE]
Thanks for the edification wrt my first paragraph. My second question stands. (Please forgive me. I'm a coder / sys-admin. I barely understand half of the maths conversations held around these-here-parts... :smile:) |
[QUOTE=chalsall;576661]Thanks for the edification wrt my first paragraph.[/QUOTE]
Sorry... Juggling too many things at the moment... That was meant to read thanks to James and masser for the knowledge. What you wrote makes sense. It's kinda cool how fast stuff happens here! :tu: It might also be a good example to point to demonstrate how deterministic code can quickly enter rarified domains where empirical data and statistics have to be brought to bear to properly understand what's to be expected. A bit like the halting problem. I'm serious when I say coding up and then running the Mandelbrot set on my C64 is when I became agnostic (from atheist). :chalsall: |
When you open the pipe for P+1 auto assignments call me. I will put ~30 cores to it for a week or more.
|
[QUOTE=kriesel;576626]Or P+1 relevant columns, added to that page, that already has TF and P-1 combined concisely?
[/QUOTE] +1 :tu: |
I tried:
Pplus1=N/A,1,2,1000033,-1,10000000,250000000,2,1000000000,"6000199" Result: P+1 found a factor in stage #1, B1=10000000. UID: mikr/Nitron, M1000033 has a factor: 6000199 (P+1, B1=10000000) The programme didn't continue. What did I do wrong that stage #2 wasn't executing? |
[QUOTE=Miszka;576735]I tried:
Pplus1=N/A,1,2,1000033,-1,10000000,250000000,2,1000000000,"6000199" Result: P+1 found a factor in stage #1, B1=10000000. UID: mikr/Nitron, M1000033 has a factor: 6000199 (P+1, B1=10000000) The programme didn't continue. What did I do wrong that stage #2 wasn't executing?[/QUOTE] Could be a bug. However, I am confused about the bolded parameter: Pplus1=N/A,1,2,1000033,-1,10000000,250000000,2,[B]1000000000[/B],"6000199" It is supposed to be the depth of TF in bits. The value you've given (1000000000) is way too high. Don't know if that has anything to do with the bug. |
[QUOTE=Miszka;576735]I tried:
Pplus1=N/A,1,2,1000033,-1,10000000,250000000,2,1000000000,"6000199" Result: P+1 found a factor in stage #1, B1=10000000. UID: mikr/Nitron, M1000033 has a factor: 6000199 (P+1, B1=10000000) The programme didn't continue. What did I do wrong that stage #2 wasn't executing?[/QUOTE] How much memory (RAM) does your machine have? The worktodo line below requires 3.6 Gb of RAM on my machine; I would guess that a larger B1 would imply a larger B2 and require more RAM. [CODE] Pplus1=N/A,1,2,1000033,-1,[B]1000000[/B],250000000,2,[B]66[/B],"6000199"[/CODE] Here's some of the relevant output: [CODE] [Work thread Apr 24 08:50] M1000033 stage 1 is 99.59% complete. Time: 1.689 sec. [Work thread Apr 24 08:50] M1000033 stage 1 complete. 3903098 transforms. Time: 331.811 sec. [Work thread Apr 24 08:50] Stage 1 GCD complete. Time: 0.090 sec. [Work thread Apr 24 08:50] With trial factoring done to 2^66, optimal B2 is 64*B1 = 64000000. [Work thread Apr 24 08:50] Chance of a new factor assuming no ECM has been done is 0.7% [Work thread Apr 24 08:50] D: 2730, relative primes: 9507, stage 2 primes: 3706588, pair%=97.25 [Work thread Apr 24 08:50] Using 3603MB of memory. [Work thread Apr 24 08:50] Stage 2 init complete. 30085 transforms. Time: 6.130 sec. [Work thread Apr 24 08:50] M1000033 stage 2 is 0.51% complete. Time: 1.682 sec. [Work thread Apr 24 08:50] M1000033 stage 2 is 1.02% complete. Time: 1.694 sec. [Work thread Apr 24 08:50] M1000033 stage 2 is 1.53% complete. Time: 1.675 sec.[/CODE] |
[QUOTE=axn;576736]Could be a bug. However, I am confused about the bolded parameter: Pplus1=N/A,1,2,1000033,-1,10000000,250000000,2,[B]1000000000[/B],"6000199"
It is supposed to be the depth of TF in bits. The value you've given (1000000000) is way too high. Don't know if that has anything to do with the bug.[/QUOTE] Clearly I misunderstood the parameter you indicated. I thought it was about the B2 increase. |
[QUOTE=masser;576738]How much memory (RAM) does your machine have?
... [/QUOTE] 32GB |
All times are UTC. The time now is 17:24. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.