mersenneforum.org

mersenneforum.org (https://www.mersenneforum.org/index.php)
-   Alberico Lepore (https://www.mersenneforum.org/forumdisplay.php?f=166)
-   -   Phantom factorization - subcubic factorization of integers? (https://www.mersenneforum.org/showthread.php?t=25572)

Alberico Lepore 2020-05-27 09:16

Phantom factorization - subcubic factorization of integers?
 
1 Attachment(s)
There are 48 systems in the paper "phantom factorization" .

Will the combination of three of them lead to factorization?

Here is an example of a combination of three times the first system
(but it is better to use three different systems)



N=187 , x=w=g=3 , u=1 , v=7 ,h=9

N^2*x*(x+2+4*u)=[8*((96 k² + 24 k + 1)-3*a*(a-1)/2)+1]/3
,
sqrt[(8*(96 k² + 24 k + 1)+1)/3+1]-(2*a-1)=[2*(3*b+1-(b-a+1))+1-(4*a-2)]=x*[2*(3*z+1-(z-y+1))+1]^2
,
sqrt[(8*(96 k² + 24 k + 1)+1)/3+1]+(2*a-1)=[2*(3*b+1-(b-a+1))+1]=(x+2+4*u)*[2*(3*z+1-(z-y+1))+1-(4*y-2)]^2
,
(96 k² + 24 k + 1-1)/3=2*b*(b+1)
,
N^2*w*(w+2+4*v)=[8*((96 m² + 24 m + 1)-3*c*(c-1)/2)+1]/3
,
sqrt[(8*(96 m² + 24 m + 1)+1)/3+1]-(2*c-1)=[2*(3*d+1-(d-c+1))+1-(4*c-2)]=w*[2*(3*z+1-(z-y+1))+1]^2
,
sqrt[(8*(96 m² + 24 m + 1)+1)/3+1]+(2*c-1)=[2*(3*d+1-(d-c+1))+1]=(w+2+4*v)*[2*(3*z+1-(z-y+1))+1-(4*y-2)]^2
,
(96 m² + 24 m + 1-1)/3=2*d*(d+1)
,
N^2*g*(g+2+4*h)=[8*((96 n² + 24 n + 1)-3*f*(f-1)/2)+1]/3
,
sqrt[(8*(96 n² + 24 n + 1)+1)/3+1]-(2*f-1)=[2*(3*r+1-(r-f+1))+1-(4*f-2)]=g*[2*(3*z+1-(z-y+1))+1]^2
,
sqrt[(8*(96 n² + 24 n + 1)+1)/3+1]+(2*f-1)=[2*(3*r+1-(r-f+1))+1]=(g+2+4*h)*[2*(3*z+1-(z-y+1))+1-(4*y-2)]^2
,
(96 n² + 24 n + 1-1)/3=2*r*(r+1)
,
(3*N-1)/8=3*z*(z+1)/2-3*y*(y-1)/2+(3*z+1)*(3*z+2)/2


Since I don't have CAS and I don't know how to use them I'm not sure, could someone tell me, please, if the system of the three systems is resolved?

This is a free copy of [url]https://www.academia.edu/43115308/Phantom_factorization[/url] for MersenneForum Friend

mathwiz 2020-05-27 12:20

I'd be amazed if anybody on the forum has the patience to put up with your gibberish anymore, after you've been told repeatedly to test your own equations.


All times are UTC. The time now is 09:15.

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.