// Here are the NewPGen format's :::: Mode character: 'P' +1 'M' -1 'T' +-1 (Twin) (Also 3-tuple and 4-tuples) 'S' Sophie Germain 'C' Cunningham chain 'B' BiTwin 'Y' Lucky Prime +1 'Z' Lucky Prime -1 'J' Twin SG 'K' Twin CC 'A' Consecutive Numbers. '1' CC Chain (1st kind (len > 2)) '2' CC Chain (2nd kind (len > 2)) '3' Bitwin (len > 2) chain len: 0 is just a single length chain 3 is a chain of length 3 5 is a chain of length 5 (many primorials ALSO set this to 5??? Not sure why) chain len is only valid if mode char is '1' '2' or '3' ... base: This is the 'b' value. BitMap: 0x0001 k*2^n+1 k*n#+1 0x0002 k*2^n-1 k*n#-1 0x0004 k*b^(n+1)+1 2k*n#+1 0x0008 k*b^(n+1)-1 2k*n#-1 0x0010 k*b^(n-1)+1 .5k*n#+1 0x0020 k*b^(n-1)-1 .5k*n#-1 0x0040 Primorial 0x0080 3-tuple and 4-tuple (PLUS5 - used in the triplet sieve.) 0x0100 Mode 'k' sieve (variable k's) 0x0200 Consecutive 0x0400 Unused (from Paul: 0x400: NOTGENERALISED - this is not used yet, and ) (will only apply to the non-primorial sieves. Basically it says) (that if the base is not 2, when we sieve for a SG (say) then ) (rather than sieving k.3^n-1 and k.3^(n+1)-1, we sieve for ) (k.3^n-1 and 2.k.3^n-1. So it converts all chains that would be) (generalised chains when the base is not 2 into real chains. ) 0x0800 4-tuple (0x800: PLUS7 - used in the quadruplet sieve.) 99991:P:0:2:1 000000000001 k*2^n+1 99991:P:0:11:1 000000000001 k*11^n+1 99991:M:0:2:2 000000000010 k*2^n-1 99991:M:0:2:2 000000000010 k*11^n-1 99991:T:0:2:3 000000000011 k*2^n+-1 (twins) 99991:S:0:11:10 000000001010 k*11^n-1 & k*11^(n+1)-1 (SG) (generalized SG since base is not 2) 99991:C:0:2:5 000000000101 k*2^n+1 & k*2^(n+1)+1 (CC) 99991:B:0:2:15 000000001111 k*2^n+-1 & k*2^(n+1)+-1 (BiTwin) 99991:Y:3:2:29 000000011101 k*2^n+-1 & k*2^(n-1)+1 & k*2^(n+1)+1 (LP) 99991:Z:3:2:46 000000101110 k*2^n+-1 & k*2^(n-1)-1 & k*2^(n+1)-1 (LM) 99991:J:3:2:11 000000001011 k*2^n+-1 & k*2^(n+1)-1 (Twin/SG) 99991:K:3:2:7 000000000111 k*2^n+-1 & k*2^(n+1)+1 (Twin/CC) 99991:A:5:13:512 001000000000 Consecutive b^13+2k-1 99991:1:3:2:42 000000101010 CC 1st kind len 3 k*2^(n-1)-1 & k*2^n-1 & k*2^(n+1)-1 99991:1:5:2:42 000000101010 CC 1st kind len 5 k*2^(n-1)-1 & k*2^n-1 & ... & k*2^(n+3)-1 99991:2:3:2:21 000000010101 CC 2st kind len 3 k*2^(n-1)+1 & k*2^n+1 & k*2^(n+1)+1 99991:2:5:2:21 000000010101 CC 2st kind len 5 k*2^(n-1)+1 & k*2^n+1 & ... & k*2^(n+3)+1 99991:3:3:2:63 000000111111 BiTwin len 3 k*2^(n-1+)-1 & k*2^n+-1 & k*2^(n+1)+-1 99991:3:5:2:63 000000111111 BiTwin len 5 k*2^(n-1+)-1 & k*2^n+-1 & ... & k*2^(n+3)+-1 99991:P:5:2:65 000001000001 primorial k*n#+1 99991:M:5:2:66 000001000010 primorial k*n#-1 99991:T:5:2:67 000001000011 primorial k*n#+-1 (twin) 99991:S:5:2:74 000001001010 primorial k*n#-1 & 2kn#-1 (SG) 99991:C:5:2:69 000001000101 primorial k*n#+1 & 2kn#+1 (CC) 99991:B:5:2:79 000001001111 primorial k*n#+-1 & 2kn#+-1 (BiTwin) 99991:Y:3:2:93 000001011101 primorial k*n#+-1 &.5k*n#+1 & 2kn#+1 (LP) 99991:Z:3:2:110 000001101110 primorial k*n#+-1 &.5k*n#-1 & 2kn#-1 (LM) 99991:J:3:2:75 000001001011 primorial k*n#+-1 & 2kn#-1 (Twin SG) 99991:K:3:2:71 000001000111 primorial k*n#+-1 & 2kn#+1 (Twin CC) 99991:A:5:2:576 001001000000 Primorial consecutive n#+2k-1 99991:1:3:2:106 000001101010 Primorial CC 1st len 3 k*n#-1 & 2kn#-1 & 4kn#-1 99991:1:5:2:106 000001101010 Primorial CC 1st len 5 k*n#-1 & 2kn#-1 & ... & 16kn#-1 99991:2:3:2:85 000001010101 Primorial CC 2nd len 3 k*n#+1 & 2kn#+1 & 4kn#+1 99991:2:5:2:85 000001010101 Primorial CC 2nd len 5 k*n#+1 & 2kn#+1 & ... & 16kn#+1 99991:3:3:2:127 000001111111 Primorial BiTwin len 3 k*n#+-1 & 2kn#+-1 & 4kn#+-1 99991:3:5:2:127 000001111111 Primorial BiTwin len 5 k*n#+-1 & 2kn#+-1 & ... & 16kn#+-1 99991:T:5:2:195 000011000011 Primorial 3-tuple k*n#/5+-1 & k*n/5+5 99991:T:5:2:2243 100011000011 Primorial 4-tuple k*n#/35+-1 +5 +7